Metamath Proof Explorer


Theorem qtopt1

Description: If every equivalence class is closed, then the quotient space is T_1 . (Contributed by Thierry Arnoux, 5-Jan-2020)

Ref Expression
Hypotheses qtopt1.x X=J
qtopt1.1 φJFre
qtopt1.2 φF:XontoY
qtopt1.3 φxYF-1xClsdJ
Assertion qtopt1 φJqTopFFre

Proof

Step Hyp Ref Expression
1 qtopt1.x X=J
2 qtopt1.1 φJFre
3 qtopt1.2 φF:XontoY
4 qtopt1.3 φxYF-1xClsdJ
5 t1top JFreJTop
6 2 5 syl φJTop
7 fofn F:XontoYFFnX
8 3 7 syl φFFnX
9 1 qtoptop JTopFFnXJqTopFTop
10 6 8 9 syl2anc φJqTopFTop
11 simpr φxJqTopFxJqTopF
12 1 qtopuni JTopF:XontoYY=JqTopF
13 6 3 12 syl2anc φY=JqTopF
14 13 adantr φxJqTopFY=JqTopF
15 11 14 eleqtrrd φxJqTopFxY
16 15 snssd φxJqTopFxY
17 15 4 syldan φxJqTopFF-1xClsdJ
18 6 1 jctir φJTopX=J
19 istopon JTopOnXJTopX=J
20 18 19 sylibr φJTopOnX
21 qtopcld JTopOnXF:XontoYxClsdJqTopFxYF-1xClsdJ
22 20 3 21 syl2anc φxClsdJqTopFxYF-1xClsdJ
23 22 adantr φxJqTopFxClsdJqTopFxYF-1xClsdJ
24 16 17 23 mpbir2and φxJqTopFxClsdJqTopF
25 24 ralrimiva φxJqTopFxClsdJqTopF
26 eqid JqTopF=JqTopF
27 26 ist1 JqTopFFreJqTopFTopxJqTopFxClsdJqTopF
28 10 25 27 sylanbrc φJqTopFFre