Metamath Proof Explorer


Theorem qtopt1

Description: If every equivalence class is closed, then the quotient space is T_1 . (Contributed by Thierry Arnoux, 5-Jan-2020)

Ref Expression
Hypotheses qtopt1.x X = J
qtopt1.1 φ J Fre
qtopt1.2 φ F : X onto Y
qtopt1.3 φ x Y F -1 x Clsd J
Assertion qtopt1 φ J qTop F Fre

Proof

Step Hyp Ref Expression
1 qtopt1.x X = J
2 qtopt1.1 φ J Fre
3 qtopt1.2 φ F : X onto Y
4 qtopt1.3 φ x Y F -1 x Clsd J
5 t1top J Fre J Top
6 2 5 syl φ J Top
7 fofn F : X onto Y F Fn X
8 3 7 syl φ F Fn X
9 1 qtoptop J Top F Fn X J qTop F Top
10 6 8 9 syl2anc φ J qTop F Top
11 simpr φ x J qTop F x J qTop F
12 1 qtopuni J Top F : X onto Y Y = J qTop F
13 6 3 12 syl2anc φ Y = J qTop F
14 13 adantr φ x J qTop F Y = J qTop F
15 11 14 eleqtrrd φ x J qTop F x Y
16 15 snssd φ x J qTop F x Y
17 15 4 syldan φ x J qTop F F -1 x Clsd J
18 6 1 jctir φ J Top X = J
19 istopon J TopOn X J Top X = J
20 18 19 sylibr φ J TopOn X
21 qtopcld J TopOn X F : X onto Y x Clsd J qTop F x Y F -1 x Clsd J
22 20 3 21 syl2anc φ x Clsd J qTop F x Y F -1 x Clsd J
23 22 adantr φ x J qTop F x Clsd J qTop F x Y F -1 x Clsd J
24 16 17 23 mpbir2and φ x J qTop F x Clsd J qTop F
25 24 ralrimiva φ x J qTop F x Clsd J qTop F
26 eqid J qTop F = J qTop F
27 26 ist1 J qTop F Fre J qTop F Top x J qTop F x Clsd J qTop F
28 10 25 27 sylanbrc φ J qTop F Fre