Description: If every equivalence class is closed, then the quotient space is T_1 . (Contributed by Thierry Arnoux, 5-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qtopt1.x | |
|
qtopt1.1 | |
||
qtopt1.2 | |
||
qtopt1.3 | |
||
Assertion | qtopt1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qtopt1.x | |
|
2 | qtopt1.1 | |
|
3 | qtopt1.2 | |
|
4 | qtopt1.3 | |
|
5 | t1top | |
|
6 | 2 5 | syl | |
7 | fofn | |
|
8 | 3 7 | syl | |
9 | 1 | qtoptop | |
10 | 6 8 9 | syl2anc | |
11 | simpr | |
|
12 | 1 | qtopuni | |
13 | 6 3 12 | syl2anc | |
14 | 13 | adantr | |
15 | 11 14 | eleqtrrd | |
16 | 15 | snssd | |
17 | 15 4 | syldan | |
18 | 6 1 | jctir | |
19 | istopon | |
|
20 | 18 19 | sylibr | |
21 | qtopcld | |
|
22 | 20 3 21 | syl2anc | |
23 | 22 | adantr | |
24 | 16 17 23 | mpbir2and | |
25 | 24 | ralrimiva | |
26 | eqid | |
|
27 | 26 | ist1 | |
28 | 10 25 27 | sylanbrc | |