Metamath Proof Explorer


Theorem qusecsub

Description: Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025)

Ref Expression
Hypotheses qusecsub.x B=BaseG
qusecsub.n -˙=-G
qusecsub.r ˙=G~QGS
Assertion qusecsub GAbelSSubGrpGXBYBX˙=Y˙Y-˙XS

Proof

Step Hyp Ref Expression
1 qusecsub.x B=BaseG
2 qusecsub.n -˙=-G
3 qusecsub.r ˙=G~QGS
4 1 subgss SSubGrpGSB
5 4 anim2i GAbelSSubGrpGGAbelSB
6 5 adantr GAbelSSubGrpGXBYBGAbelSB
7 1 2 3 eqgabl GAbelSBX˙YXBYBY-˙XS
8 6 7 syl GAbelSSubGrpGXBYBX˙YXBYBY-˙XS
9 1 3 eqger SSubGrpG˙ErB
10 9 ad2antlr GAbelSSubGrpGXBYB˙ErB
11 simprl GAbelSSubGrpGXBYBXB
12 10 11 erth GAbelSSubGrpGXBYBX˙YX˙=Y˙
13 df-3an XBYBY-˙XSXBYBY-˙XS
14 ibar XBYBY-˙XSXBYBY-˙XS
15 14 adantl GAbelSSubGrpGXBYBY-˙XSXBYBY-˙XS
16 13 15 bitr4id GAbelSSubGrpGXBYBXBYBY-˙XSY-˙XS
17 8 12 16 3bitr3d GAbelSSubGrpGXBYBX˙=Y˙Y-˙XS