Description: Two subgroup cosets are equal if and only if the difference of their representatives is a member of the subgroup. (Contributed by AV, 7-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qusecsub.x | |
|
qusecsub.n | |
||
qusecsub.r | |
||
Assertion | qusecsub | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusecsub.x | |
|
2 | qusecsub.n | |
|
3 | qusecsub.r | |
|
4 | 1 | subgss | |
5 | 4 | anim2i | |
6 | 5 | adantr | |
7 | 1 2 3 | eqgabl | |
8 | 6 7 | syl | |
9 | 1 3 | eqger | |
10 | 9 | ad2antlr | |
11 | simprl | |
|
12 | 10 11 | erth | |
13 | df-3an | |
|
14 | ibar | |
|
15 | 14 | adantl | |
16 | 13 15 | bitr4id | |
17 | 8 12 16 | 3bitr3d | |