Description: Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qusmul.h | |
|
qusmul.v | |
||
qusmul.p | |
||
qusmul.a | |
||
qusmul.r | |
||
qusmul.i | |
||
qusmul.x | |
||
qusmul.y | |
||
Assertion | qusmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusmul.h | |
|
2 | qusmul.v | |
|
3 | qusmul.p | |
|
4 | qusmul.a | |
|
5 | qusmul.r | |
|
6 | qusmul.i | |
|
7 | qusmul.x | |
|
8 | qusmul.y | |
|
9 | 1 | a1i | |
10 | 2 | a1i | |
11 | 5 | crngringd | |
12 | eqid | |
|
13 | 12 | lidlsubg | |
14 | 11 6 13 | syl2anc | |
15 | eqid | |
|
16 | 2 15 | eqger | |
17 | 14 16 | syl | |
18 | 12 | crng2idl | |
19 | 5 18 | syl | |
20 | 6 19 | eleqtrd | |
21 | eqid | |
|
22 | 2 15 21 3 | 2idlcpbl | |
23 | 11 20 22 | syl2anc | |
24 | 2 3 | ringcl | |
25 | 24 | 3expb | |
26 | 11 25 | sylan | |
27 | 26 | caovclg | |
28 | 9 10 17 5 23 27 3 4 | qusmulval | |
29 | 7 8 28 | mpd3an23 | |