Metamath Proof Explorer


Theorem qusmul

Description: Value of the ring operation in a quotient ring. (Contributed by Thierry Arnoux, 1-Sep-2024)

Ref Expression
Hypotheses qusmul.h Q=R/𝑠R~QGI
qusmul.v B=BaseR
qusmul.p ·˙=R
qusmul.a ×˙=Q
qusmul.r φRCRing
qusmul.i φILIdealR
qusmul.x φXB
qusmul.y φYB
Assertion qusmul φXR~QGI×˙YR~QGI=X·˙YR~QGI

Proof

Step Hyp Ref Expression
1 qusmul.h Q=R/𝑠R~QGI
2 qusmul.v B=BaseR
3 qusmul.p ·˙=R
4 qusmul.a ×˙=Q
5 qusmul.r φRCRing
6 qusmul.i φILIdealR
7 qusmul.x φXB
8 qusmul.y φYB
9 1 a1i φQ=R/𝑠R~QGI
10 2 a1i φB=BaseR
11 5 crngringd φRRing
12 eqid LIdealR=LIdealR
13 12 lidlsubg RRingILIdealRISubGrpR
14 11 6 13 syl2anc φISubGrpR
15 eqid R~QGI=R~QGI
16 2 15 eqger ISubGrpRR~QGIErB
17 14 16 syl φR~QGIErB
18 12 crng2idl RCRingLIdealR=2IdealR
19 5 18 syl φLIdealR=2IdealR
20 6 19 eleqtrd φI2IdealR
21 eqid 2IdealR=2IdealR
22 2 15 21 3 2idlcpbl RRingI2IdealRxR~QGIyzR~QGItx·˙zR~QGIy·˙t
23 11 20 22 syl2anc φxR~QGIyzR~QGItx·˙zR~QGIy·˙t
24 2 3 ringcl RRingpBqBp·˙qB
25 24 3expb RRingpBqBp·˙qB
26 11 25 sylan φpBqBp·˙qB
27 26 caovclg φyBtBy·˙tB
28 9 10 17 5 23 27 3 4 qusmulval φXBYBXR~QGI×˙YR~QGI=X·˙YR~QGI
29 7 8 28 mpd3an23 φXR~QGI×˙YR~QGI=X·˙YR~QGI