| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qusmul2idl.h |  | 
						
							| 2 |  | qusmul2idl.v |  | 
						
							| 3 |  | qusmul2idl.p |  | 
						
							| 4 |  | qusmul2idl.a |  | 
						
							| 5 |  | qusmul2idl.1 |  | 
						
							| 6 |  | qusmul2idl.2 |  | 
						
							| 7 |  | qusmul2idl.3 |  | 
						
							| 8 |  | qusmul2idl.4 |  | 
						
							| 9 | 1 | a1i |  | 
						
							| 10 | 2 | a1i |  | 
						
							| 11 | 6 | 2idllidld |  | 
						
							| 12 |  | eqid |  | 
						
							| 13 | 12 | lidlsubg |  | 
						
							| 14 | 5 11 13 | syl2anc |  | 
						
							| 15 |  | eqid |  | 
						
							| 16 | 2 15 | eqger |  | 
						
							| 17 | 14 16 | syl |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 2 15 18 3 | 2idlcpbl |  | 
						
							| 20 | 5 6 19 | syl2anc |  | 
						
							| 21 | 2 3 | ringcl |  | 
						
							| 22 | 21 | 3expb |  | 
						
							| 23 | 5 22 | sylan |  | 
						
							| 24 | 23 | caovclg |  | 
						
							| 25 | 9 10 17 5 20 24 3 4 | qusmulval |  | 
						
							| 26 | 7 8 25 | mpd3an23 |  |