Description: The quotient structure of a non-unital ring is a non-unital ring ( qusring2 analog). (Contributed by AV, 23-Feb-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qusrng.u | |
|
qusrng.v | |
||
qusrng.p | |
||
qusrng.t | |
||
qusrng.r | |
||
qusrng.e1 | |
||
qusrng.e2 | |
||
qusrng.x | |
||
Assertion | qusrng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusrng.u | |
|
2 | qusrng.v | |
|
3 | qusrng.p | |
|
4 | qusrng.t | |
|
5 | qusrng.r | |
|
6 | qusrng.e1 | |
|
7 | qusrng.e2 | |
|
8 | qusrng.x | |
|
9 | eqid | |
|
10 | fvex | |
|
11 | 2 10 | eqeltrdi | |
12 | erex | |
|
13 | 5 11 12 | sylc | |
14 | 1 2 9 13 8 | qusval | |
15 | 1 2 9 13 8 | quslem | |
16 | 8 | adantr | |
17 | simprl | |
|
18 | 2 | eleq2d | |
19 | 18 | adantr | |
20 | 17 19 | mpbid | |
21 | simprr | |
|
22 | 2 | eleq2d | |
23 | 22 | adantr | |
24 | 21 23 | mpbid | |
25 | eqid | |
|
26 | 25 3 | rngacl | |
27 | 16 20 24 26 | syl3anc | |
28 | 2 | eleq2d | |
29 | 28 | adantr | |
30 | 27 29 | mpbird | |
31 | 5 11 9 30 6 | ercpbl | |
32 | 25 4 | rngcl | |
33 | 16 20 24 32 | syl3anc | |
34 | 2 | eleq2d | |
35 | 34 | adantr | |
36 | 33 35 | mpbird | |
37 | 5 11 9 36 7 | ercpbl | |
38 | 14 2 3 4 15 31 37 8 | imasrng | |