Metamath Proof Explorer


Theorem qusrng

Description: The quotient structure of a non-unital ring is a non-unital ring ( qusring2 analog). (Contributed by AV, 23-Feb-2025)

Ref Expression
Hypotheses qusrng.u φU=R/𝑠˙
qusrng.v φV=BaseR
qusrng.p +˙=+R
qusrng.t ·˙=R
qusrng.r φ˙ErV
qusrng.e1 φa˙pb˙qa+˙b˙p+˙q
qusrng.e2 φa˙pb˙qa·˙b˙p·˙q
qusrng.x φRRng
Assertion qusrng φURng

Proof

Step Hyp Ref Expression
1 qusrng.u φU=R/𝑠˙
2 qusrng.v φV=BaseR
3 qusrng.p +˙=+R
4 qusrng.t ·˙=R
5 qusrng.r φ˙ErV
6 qusrng.e1 φa˙pb˙qa+˙b˙p+˙q
7 qusrng.e2 φa˙pb˙qa·˙b˙p·˙q
8 qusrng.x φRRng
9 eqid uVu˙=uVu˙
10 fvex BaseRV
11 2 10 eqeltrdi φVV
12 erex ˙ErVVV˙V
13 5 11 12 sylc φ˙V
14 1 2 9 13 8 qusval φU=uVu˙𝑠R
15 1 2 9 13 8 quslem φuVu˙:VontoV/˙
16 8 adantr φxVyVRRng
17 simprl φxVyVxV
18 2 eleq2d φxVxBaseR
19 18 adantr φxVyVxVxBaseR
20 17 19 mpbid φxVyVxBaseR
21 simprr φxVyVyV
22 2 eleq2d φyVyBaseR
23 22 adantr φxVyVyVyBaseR
24 21 23 mpbid φxVyVyBaseR
25 eqid BaseR=BaseR
26 25 3 rngacl RRngxBaseRyBaseRx+˙yBaseR
27 16 20 24 26 syl3anc φxVyVx+˙yBaseR
28 2 eleq2d φx+˙yVx+˙yBaseR
29 28 adantr φxVyVx+˙yVx+˙yBaseR
30 27 29 mpbird φxVyVx+˙yV
31 5 11 9 30 6 ercpbl φaVbVpVqVuVu˙a=uVu˙puVu˙b=uVu˙quVu˙a+˙b=uVu˙p+˙q
32 25 4 rngcl RRngxBaseRyBaseRx·˙yBaseR
33 16 20 24 32 syl3anc φxVyVx·˙yBaseR
34 2 eleq2d φx·˙yVx·˙yBaseR
35 34 adantr φxVyVx·˙yVx·˙yBaseR
36 33 35 mpbird φxVyVx·˙yV
37 5 11 9 36 7 ercpbl φaVbVpVqVuVu˙a=uVu˙puVu˙b=uVu˙quVu˙a·˙b=uVu˙p·˙q
38 14 2 3 4 15 31 37 8 imasrng φURng