Metamath Proof Explorer


Theorem qusval

Description: Value of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses qusval.u φ U = R / 𝑠 ˙
qusval.v φ V = Base R
qusval.f F = x V x ˙
qusval.e φ ˙ W
qusval.r φ R Z
Assertion qusval φ U = F 𝑠 R

Proof

Step Hyp Ref Expression
1 qusval.u φ U = R / 𝑠 ˙
2 qusval.v φ V = Base R
3 qusval.f F = x V x ˙
4 qusval.e φ ˙ W
5 qusval.r φ R Z
6 df-qus / 𝑠 = r V , e V x Base r x e 𝑠 r
7 6 a1i φ / 𝑠 = r V , e V x Base r x e 𝑠 r
8 simprl φ r = R e = ˙ r = R
9 8 fveq2d φ r = R e = ˙ Base r = Base R
10 2 adantr φ r = R e = ˙ V = Base R
11 9 10 eqtr4d φ r = R e = ˙ Base r = V
12 eceq2 e = ˙ x e = x ˙
13 12 ad2antll φ r = R e = ˙ x e = x ˙
14 11 13 mpteq12dv φ r = R e = ˙ x Base r x e = x V x ˙
15 14 3 eqtr4di φ r = R e = ˙ x Base r x e = F
16 15 8 oveq12d φ r = R e = ˙ x Base r x e 𝑠 r = F 𝑠 R
17 5 elexd φ R V
18 4 elexd φ ˙ V
19 ovexd φ F 𝑠 R V
20 7 16 17 18 19 ovmpod φ R / 𝑠 ˙ = F 𝑠 R
21 1 20 eqtrd φ U = F 𝑠 R