Metamath Proof Explorer


Theorem rabrenfdioph

Description: Change variable numbers in a Diophantine class abstraction using explicit substitution. (Contributed by Stefan O'Rear, 17-Oct-2014)

Ref Expression
Assertion rabrenfdioph B0F:1A1Ba01A|φDiophAb01B|[˙bF/a]˙φDiophB

Proof

Step Hyp Ref Expression
1 simpr B0F:1A1Bb01Bb01B
2 simplr B0F:1A1Bb01BF:1A1B
3 ovex 1AV
4 3 mapco2 b01BF:1A1BbF01A
5 1 2 4 syl2anc B0F:1A1Bb01BbF01A
6 5 biantrurd B0F:1A1Bb01B[˙bF/a]˙φbF01A[˙bF/a]˙φ
7 nfcv _a01A
8 7 elrabsf bFa01A|φbF01A[˙bF/a]˙φ
9 6 8 bitr4di B0F:1A1Bb01B[˙bF/a]˙φbFa01A|φ
10 9 rabbidva B0F:1A1Bb01B|[˙bF/a]˙φ=b01B|bFa01A|φ
11 10 3adant3 B0F:1A1Ba01A|φDiophAb01B|[˙bF/a]˙φ=b01B|bFa01A|φ
12 diophren a01A|φDiophAB0F:1A1Bb01B|bFa01A|φDiophB
13 12 3coml B0F:1A1Ba01A|φDiophAb01B|bFa01A|φDiophB
14 11 13 eqeltrd B0F:1A1Ba01A|φDiophAb01B|[˙bF/a]˙φDiophB