Metamath Proof Explorer


Theorem ramcl2

Description: The Ramsey number is either a nonnegative integer or plus infinity. (Contributed by Mario Carneiro, 20-Apr-2015) (Revised by AV, 14-Sep-2020)

Ref Expression
Assertion ramcl2 M0RVF:R0MRamseyF0+∞

Proof

Step Hyp Ref Expression
1 eqid aV,i0b𝒫a|b=i=aV,i0b𝒫a|b=i
2 eqid n0|snsfRsaV,i0b𝒫a|b=iMcRx𝒫sFcxxaV,i0b𝒫a|b=iMf-1c=n0|snsfRsaV,i0b𝒫a|b=iMcRx𝒫sFcxxaV,i0b𝒫a|b=iMf-1c
3 1 2 ramcl2lem M0RVF:R0MRamseyF=ifn0|snsfRsaV,i0b𝒫a|b=iMcRx𝒫sFcxxaV,i0b𝒫a|b=iMf-1c=+∞supn0|snsfRsaV,i0b𝒫a|b=iMcRx𝒫sFcxxaV,i0b𝒫a|b=iMf-1c<
4 iftrue n0|snsfRsaV,i0b𝒫a|b=iMcRx𝒫sFcxxaV,i0b𝒫a|b=iMf-1c=ifn0|snsfRsaV,i0b𝒫a|b=iMcRx𝒫sFcxxaV,i0b𝒫a|b=iMf-1c=+∞supn0|snsfRsaV,i0b𝒫a|b=iMcRx𝒫sFcxxaV,i0b𝒫a|b=iMf-1c<=+∞
5 3 4 sylan9eq M0RVF:R0n0|snsfRsaV,i0b𝒫a|b=iMcRx𝒫sFcxxaV,i0b𝒫a|b=iMf-1c=MRamseyF=+∞
6 ssun2 +∞0+∞
7 pnfex +∞V
8 7 snss +∞0+∞+∞0+∞
9 6 8 mpbir +∞0+∞
10 5 9 eqeltrdi M0RVF:R0n0|snsfRsaV,i0b𝒫a|b=iMcRx𝒫sFcxxaV,i0b𝒫a|b=iMf-1c=MRamseyF0+∞
11 ssun1 00+∞
12 1 2 ramtcl2 M0RVF:R0MRamseyF0n0|snsfRsaV,i0b𝒫a|b=iMcRx𝒫sFcxxaV,i0b𝒫a|b=iMf-1c
13 12 biimpar M0RVF:R0n0|snsfRsaV,i0b𝒫a|b=iMcRx𝒫sFcxxaV,i0b𝒫a|b=iMf-1cMRamseyF0
14 11 13 sselid M0RVF:R0n0|snsfRsaV,i0b𝒫a|b=iMcRx𝒫sFcxxaV,i0b𝒫a|b=iMf-1cMRamseyF0+∞
15 10 14 pm2.61dane M0RVF:R0MRamseyF0+∞