Metamath Proof Explorer


Theorem rdgellim

Description: Elementhood in a recursive definition at a limit ordinal. (Contributed by ML, 30-Mar-2022)

Ref Expression
Assertion rdgellim B On Lim B C B X rec F A C X rec F A B

Proof

Step Hyp Ref Expression
1 fveq2 y = C rec F A y = rec F A C
2 1 eleq2d y = C X rec F A y X rec F A C
3 2 rspcev C B X rec F A C y B X rec F A y
4 3 ex C B X rec F A C y B X rec F A y
5 eliun X y B rec F A y y B X rec F A y
6 4 5 syl6ibr C B X rec F A C X y B rec F A y
7 6 adantl B On Lim B C B X rec F A C X y B rec F A y
8 rdglim2a B On Lim B rec F A B = y B rec F A y
9 8 eleq2d B On Lim B X rec F A B X y B rec F A y
10 9 adantr B On Lim B C B X rec F A B X y B rec F A y
11 7 10 sylibrd B On Lim B C B X rec F A C X rec F A B