Metamath Proof Explorer


Theorem reccot

Description: The reciprocal of cotangent is tangent. (Contributed by David A. Wheeler, 21-Mar-2014)

Ref Expression
Assertion reccot AsinA0cosA0tanA=1cotA

Proof

Step Hyp Ref Expression
1 sincl AsinA
2 coscl AcosA
3 recdiv cosAcosA0sinAsinA01cosAsinA=sinAcosA
4 2 3 sylanl1 AcosA0sinAsinA01cosAsinA=sinAcosA
5 1 4 sylanr1 AcosA0AsinA01cosAsinA=sinAcosA
6 5 3impdi AcosA0sinA01cosAsinA=sinAcosA
7 6 3com23 AsinA0cosA01cosAsinA=sinAcosA
8 cotval AsinA0cotA=cosAsinA
9 8 3adant3 AsinA0cosA0cotA=cosAsinA
10 9 oveq2d AsinA0cosA01cotA=1cosAsinA
11 tanval AcosA0tanA=sinAcosA
12 11 3adant2 AsinA0cosA0tanA=sinAcosA
13 7 10 12 3eqtr4rd AsinA0cosA0tanA=1cotA