Metamath Proof Explorer


Theorem receqid

Description: Real numbers equal to their own reciprocal have absolute value 1 . (Contributed by Thierry Arnoux, 9-Nov-2025)

Ref Expression
Hypotheses receqid.1 φ A
receqid.2 φ A 0
Assertion receqid φ 1 A = A A = 1

Proof

Step Hyp Ref Expression
1 receqid.1 φ A
2 receqid.2 φ A 0
3 1 absred φ A = A 2
4 sqrt1 1 = 1
5 4 a1i φ 1 = 1
6 5 eqcomd φ 1 = 1
7 3 6 eqeq12d φ A = 1 A 2 = 1
8 1 resqcld φ A 2
9 1 sqge0d φ 0 A 2
10 1red φ 1
11 0le1 0 1
12 11 a1i φ 0 1
13 sqrt11 A 2 0 A 2 1 0 1 A 2 = 1 A 2 = 1
14 8 9 10 12 13 syl22anc φ A 2 = 1 A 2 = 1
15 8 recnd φ A 2
16 1cnd φ 1
17 1 recnd φ A
18 div11 A 2 1 A A 0 A 2 A = 1 A A 2 = 1
19 15 16 17 2 18 syl112anc φ A 2 A = 1 A A 2 = 1
20 sqdivid A A 0 A 2 A = A
21 17 2 20 syl2anc φ A 2 A = A
22 21 eqeq1d φ A 2 A = 1 A A = 1 A
23 14 19 22 3bitr2rd φ A = 1 A A 2 = 1
24 eqcom A = 1 A 1 A = A
25 24 a1i φ A = 1 A 1 A = A
26 7 23 25 3bitr2rd φ 1 A = A A = 1