Metamath Proof Explorer


Theorem refref

Description: Reflexivity of refinement. (Contributed by Jeff Hankins, 18-Jan-2010)

Ref Expression
Assertion refref AVARefA

Proof

Step Hyp Ref Expression
1 eqid A=A
2 ssid xx
3 sseq2 y=xxyxx
4 3 rspcev xAxxyAxy
5 2 4 mpan2 xAyAxy
6 5 rgen xAyAxy
7 1 6 pm3.2i A=AxAyAxy
8 1 1 isref AVARefAA=AxAyAxy
9 7 8 mpbiri AVARefA