Metamath Proof Explorer


Theorem refrelredund4

Description: The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 ) if the relation is symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022)

Ref Expression
Assertion refrelredund4 redundIdomRRRelRRefRelRRefRelRSymRelR

Proof

Step Hyp Ref Expression
1 inxpssres IdomR×ranRIdomR
2 sstr2 IdomR×ranRIdomRIdomRRIdomR×ranRR
3 1 2 ax-mp IdomRRIdomR×ranRR
4 3 anim1i IdomRRRelRIdomR×ranRRRelR
5 dfrefrel2 RefRelRIdomR×ranRRRelR
6 4 5 sylibr IdomRRRelRRefRelR
7 an12 IdomRRRelRRefRelRSymRelRRefRelRIdomRRRelRSymRelR
8 anandir IdomRRR-1RRelRIdomRRRelRR-1RRelR
9 refsymrel2 RefRelRSymRelRIdomRRR-1RRelR
10 dfsymrel2 SymRelRR-1RRelR
11 10 anbi2i IdomRRRelRSymRelRIdomRRRelRR-1RRelR
12 8 9 11 3bitr4i RefRelRSymRelRIdomRRRelRSymRelR
13 12 anbi2i RefRelRRefRelRSymRelRRefRelRIdomRRRelRSymRelR
14 7 13 bitr4i IdomRRRelRRefRelRSymRelRRefRelRRefRelRSymRelR
15 df-redundp redundIdomRRRelRRefRelRRefRelRSymRelRIdomRRRelRRefRelRIdomRRRelRRefRelRSymRelRRefRelRRefRelRSymRelR
16 6 14 15 mpbir2an redundIdomRRRelRRefRelRRefRelRSymRelR