Description: The naive version of the definition of reflexive relation is redundant with respect to reflexive relation (see dfrefrel2 ) if the relation is symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | refrelredund4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inxpssres | |
|
2 | sstr2 | |
|
3 | 1 2 | ax-mp | |
4 | 3 | anim1i | |
5 | dfrefrel2 | |
|
6 | 4 5 | sylibr | |
7 | an12 | |
|
8 | anandir | |
|
9 | refsymrel2 | |
|
10 | dfsymrel2 | |
|
11 | 10 | anbi2i | |
12 | 8 9 11 | 3bitr4i | |
13 | 12 | anbi2i | |
14 | 7 13 | bitr4i | |
15 | df-redundp | |
|
16 | 6 14 15 | mpbir2an | |