Description: The naive version of the class of reflexive relations is redundant with respect to the class of reflexive relations (see dfrefrels2 ) if the relations are symmetric as well. (Contributed by Peter Mazsa, 26-Oct-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | refrelsredund4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inxpssres | |
|
2 | sstr2 | |
|
3 | 1 2 | ax-mp | |
4 | 3 | ssrabi | |
5 | dfrefrels2 | |
|
6 | 4 5 | sseqtrri | |
7 | in32 | |
|
8 | inrab | |
|
9 | dfsymrels2 | |
|
10 | 9 | ineq2i | |
11 | refsymrels2 | |
|
12 | 8 10 11 | 3eqtr4i | |
13 | 12 | ineq1i | |
14 | inass | |
|
15 | 7 13 14 | 3eqtr3ri | |
16 | in32 | |
|
17 | inass | |
|
18 | 15 16 17 | 3eqtri | |
19 | df-redund | |
|
20 | 6 18 19 | mpbir2an | |