Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 ) is reflexive, see also refrelressn . (Contributed by Peter Mazsa, 12-Jun-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | refressn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin | |
|
2 | eldmressnALTV | |
|
3 | 2 | elv | |
4 | 3 | simplbi | |
5 | 4 | adantr | |
6 | 1 5 | sylbi | |
7 | 6 | a1i | |
8 | elrnressn | |
|
9 | 8 | elvd | |
10 | 9 | biimpd | |
11 | 10 | adantld | |
12 | 1 11 | biimtrid | |
13 | 4 | eqcomd | |
14 | 13 | breq1d | |
15 | 14 | adantr | |
16 | 1 15 | sylbi | |
17 | 12 16 | mpbidi | |
18 | 7 17 | jcad | |
19 | brressn | |
|
20 | 19 | el2v | |
21 | 18 20 | syl6ibr | |
22 | 21 | ralrimiv | |