Metamath Proof Explorer


Theorem refressn

Description: Any class ' R ' restricted to the singleton of the set ' A ' (see ressn2 ) is reflexive, see also refrelressn . (Contributed by Peter Mazsa, 12-Jun-2024)

Ref Expression
Assertion refressn AVxdomRAranRAxRAx

Proof

Step Hyp Ref Expression
1 elin xdomRAranRAxdomRAxranRA
2 eldmressnALTV xVxdomRAx=AAdomR
3 2 elv xdomRAx=AAdomR
4 3 simplbi xdomRAx=A
5 4 adantr xdomRAxranRAx=A
6 1 5 sylbi xdomRAranRAx=A
7 6 a1i AVxdomRAranRAx=A
8 elrnressn AVxVxranRAARx
9 8 elvd AVxranRAARx
10 9 biimpd AVxranRAARx
11 10 adantld AVxdomRAxranRAARx
12 1 11 biimtrid AVxdomRAranRAARx
13 4 eqcomd xdomRAA=x
14 13 breq1d xdomRAARxxRx
15 14 adantr xdomRAxranRAARxxRx
16 1 15 sylbi xdomRAranRAARxxRx
17 12 16 mpbidi AVxdomRAranRAxRx
18 7 17 jcad AVxdomRAranRAx=AxRx
19 brressn xVxVxRAxx=AxRx
20 19 el2v xRAxx=AxRx
21 18 20 syl6ibr AVxdomRAranRAxRAx
22 21 ralrimiv AVxdomRAranRAxRAx