Metamath Proof Explorer


Theorem refssex

Description: Every set in a refinement has a superset in the original cover. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)

Ref Expression
Assertion refssex ARefBSAxBSx

Proof

Step Hyp Ref Expression
1 refrel RelRef
2 1 brrelex1i ARefBAV
3 eqid A=A
4 eqid B=B
5 3 4 isref AVARefBB=AyAxByx
6 5 simplbda AVARefByAxByx
7 2 6 mpancom ARefByAxByx
8 sseq1 y=SyxSx
9 8 rexbidv y=SxByxxBSx
10 9 rspccv yAxByxSAxBSx
11 7 10 syl ARefBSAxBSx
12 11 imp ARefBSAxBSx