Description: Relate a group sum on ` ( CCfld |``s RR ) ` to a finite sum on the reals. Cf. gsumfsum . (Contributed by Thierry Arnoux, 7-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | regsumfsum.1 | |
|
regsumfsum.2 | |
||
Assertion | regsumfsum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | regsumfsum.1 | |
|
2 | regsumfsum.2 | |
|
3 | cnfldbas | |
|
4 | cnfldadd | |
|
5 | eqid | |
|
6 | cnfldex | |
|
7 | 6 | a1i | |
8 | ax-resscn | |
|
9 | 8 | a1i | |
10 | 2 | fmpttd | |
11 | 0red | |
|
12 | simpr | |
|
13 | 12 | addlidd | |
14 | 12 | addridd | |
15 | 13 14 | jca | |
16 | 3 4 5 7 1 9 10 11 15 | gsumress | |
17 | 2 | recnd | |
18 | 1 17 | gsumfsum | |
19 | 16 18 | eqtr3d | |