Metamath Proof Explorer


Theorem regsumfsum

Description: Relate a group sum on ` ( CCfld |``s RR ) ` to a finite sum on the reals. Cf. gsumfsum . (Contributed by Thierry Arnoux, 7-Sep-2018)

Ref Expression
Hypotheses regsumfsum.1 φAFin
regsumfsum.2 φkAB
Assertion regsumfsum φfld𝑠kAB=kAB

Proof

Step Hyp Ref Expression
1 regsumfsum.1 φAFin
2 regsumfsum.2 φkAB
3 cnfldbas =Basefld
4 cnfldadd +=+fld
5 eqid fld𝑠=fld𝑠
6 cnfldex fldV
7 6 a1i φfldV
8 ax-resscn
9 8 a1i φ
10 2 fmpttd φkAB:A
11 0red φ0
12 simpr φxx
13 12 addlidd φx0+x=x
14 12 addridd φxx+0=x
15 13 14 jca φx0+x=xx+0=x
16 3 4 5 7 1 9 10 11 15 gsumress φfldkAB=fld𝑠kAB
17 2 recnd φkAB
18 1 17 gsumfsum φfldkAB=kAB
19 16 18 eqtr3d φfld𝑠kAB=kAB