Metamath Proof Explorer


Theorem rei4

Description: i4 without ax-mulcom . (Contributed by SN, 27-May-2024)

Ref Expression
Assertion rei4 i i i i = 1

Proof

Step Hyp Ref Expression
1 reixi i i = 0 - 1
2 1 1 oveq12i i i i i = 0 - 1 0 - 1
3 1re 1
4 rernegcl 1 0 - 1
5 3 4 ax-mp 0 - 1
6 0re 0
7 resubdi 0 - 1 0 1 0 - 1 0 - 1 = 0 - 1 0 - 0 - 1 1
8 5 6 3 7 mp3an 0 - 1 0 - 1 = 0 - 1 0 - 0 - 1 1
9 remul01 0 - 1 0 - 1 0 = 0
10 5 9 ax-mp 0 - 1 0 = 0
11 ax-1rid 0 - 1 0 - 1 1 = 0 - 1
12 5 11 ax-mp 0 - 1 1 = 0 - 1
13 10 12 oveq12i 0 - 1 0 - 0 - 1 1 = 0 - 0 - 1
14 renegneg 1 0 - 0 - 1 = 1
15 3 14 ax-mp 0 - 0 - 1 = 1
16 8 13 15 3eqtri 0 - 1 0 - 1 = 1
17 2 16 eqtri i i i i = 1