Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Real subtraction
rei4
Next ⟩
sn-addid0
Metamath Proof Explorer
Ascii
Unicode
Theorem
rei4
Description:
i4
without
ax-mulcom
.
(Contributed by
SN
, 27-May-2024)
Ref
Expression
Assertion
rei4
⊢
i
⁢
i
⁢
i
⁢
i
=
1
Proof
Step
Hyp
Ref
Expression
1
reixi
⊢
i
⁢
i
=
0
-
ℝ
1
2
1
1
oveq12i
⊢
i
⁢
i
⁢
i
⁢
i
=
0
-
ℝ
1
⁢
0
-
ℝ
1
3
1re
⊢
1
∈
ℝ
4
rernegcl
⊢
1
∈
ℝ
→
0
-
ℝ
1
∈
ℝ
5
3
4
ax-mp
⊢
0
-
ℝ
1
∈
ℝ
6
0re
⊢
0
∈
ℝ
7
resubdi
⊢
0
-
ℝ
1
∈
ℝ
∧
0
∈
ℝ
∧
1
∈
ℝ
→
0
-
ℝ
1
⁢
0
-
ℝ
1
=
0
-
ℝ
1
⋅
0
-
ℝ
0
-
ℝ
1
⋅
1
8
5
6
3
7
mp3an
⊢
0
-
ℝ
1
⁢
0
-
ℝ
1
=
0
-
ℝ
1
⋅
0
-
ℝ
0
-
ℝ
1
⋅
1
9
remul01
⊢
0
-
ℝ
1
∈
ℝ
→
0
-
ℝ
1
⋅
0
=
0
10
5
9
ax-mp
⊢
0
-
ℝ
1
⋅
0
=
0
11
ax-1rid
⊢
0
-
ℝ
1
∈
ℝ
→
0
-
ℝ
1
⋅
1
=
0
-
ℝ
1
12
5
11
ax-mp
⊢
0
-
ℝ
1
⋅
1
=
0
-
ℝ
1
13
10
12
oveq12i
⊢
0
-
ℝ
1
⋅
0
-
ℝ
0
-
ℝ
1
⋅
1
=
0
-
ℝ
0
-
ℝ
1
14
renegneg
⊢
1
∈
ℝ
→
0
-
ℝ
0
-
ℝ
1
=
1
15
3
14
ax-mp
⊢
0
-
ℝ
0
-
ℝ
1
=
1
16
8
13
15
3eqtri
⊢
0
-
ℝ
1
⁢
0
-
ℝ
1
=
1
17
2
16
eqtri
⊢
i
⁢
i
⁢
i
⁢
i
=
1