Metamath Proof Explorer


Theorem relexp0eq

Description: The zeroth power of relationships is the same if and only if the union of their domain and ranges is the same. (Contributed by RP, 11-Jun-2020)

Ref Expression
Assertion relexp0eq A U B V dom A ran A = dom B ran B A r 0 = B r 0

Proof

Step Hyp Ref Expression
1 dfcleq dom A ran A = dom B ran B x x dom A ran A x dom B ran B
2 alcom y x x dom A ran A x dom B ran B x y x dom A ran A x dom B ran B
3 19.3v y x x dom A ran A x dom B ran B x x dom A ran A x dom B ran B
4 ax6ev y y = x
5 pm5.5 y y = x y y = x x dom A ran A x dom B ran B x dom A ran A x dom B ran B
6 4 5 ax-mp y y = x x dom A ran A x dom B ran B x dom A ran A x dom B ran B
7 19.23v y y = x x dom A ran A x dom B ran B y y = x x dom A ran A x dom B ran B
8 19.3v y x dom A ran A x dom B ran B x dom A ran A x dom B ran B
9 6 7 8 3bitr4ri y x dom A ran A x dom B ran B y y = x x dom A ran A x dom B ran B
10 pm5.32 y = x x dom A ran A x dom B ran B y = x x dom A ran A y = x x dom B ran B
11 ancom y = x x dom A ran A x dom A ran A y = x
12 ancom y = x x dom B ran B x dom B ran B y = x
13 11 12 bibi12i y = x x dom A ran A y = x x dom B ran B x dom A ran A y = x x dom B ran B y = x
14 10 13 bitri y = x x dom A ran A x dom B ran B x dom A ran A y = x x dom B ran B y = x
15 14 albii y y = x x dom A ran A x dom B ran B y x dom A ran A y = x x dom B ran B y = x
16 9 15 bitri y x dom A ran A x dom B ran B y x dom A ran A y = x x dom B ran B y = x
17 16 albii x y x dom A ran A x dom B ran B x y x dom A ran A y = x x dom B ran B y = x
18 2 3 17 3bitr3i x x dom A ran A x dom B ran B x y x dom A ran A y = x x dom B ran B y = x
19 1 18 bitri dom A ran A = dom B ran B x y x dom A ran A y = x x dom B ran B y = x
20 eqopab2bw x y | x dom A ran A y = x = x y | x dom B ran B y = x x y x dom A ran A y = x x dom B ran B y = x
21 opabresid I dom A ran A = x y | x dom A ran A y = x
22 21 eqcomi x y | x dom A ran A y = x = I dom A ran A
23 opabresid I dom B ran B = x y | x dom B ran B y = x
24 23 eqcomi x y | x dom B ran B y = x = I dom B ran B
25 22 24 eqeq12i x y | x dom A ran A y = x = x y | x dom B ran B y = x I dom A ran A = I dom B ran B
26 19 20 25 3bitr2i dom A ran A = dom B ran B I dom A ran A = I dom B ran B
27 relexp0g A U A r 0 = I dom A ran A
28 relexp0g B V B r 0 = I dom B ran B
29 27 28 eqeqan12d A U B V A r 0 = B r 0 I dom A ran A = I dom B ran B
30 26 29 bitr4id A U B V dom A ran A = dom B ran B A r 0 = B r 0