Metamath Proof Explorer


Theorem relexp0eq

Description: The zeroth power of relationships is the same if and only if the union of their domain and ranges is the same. (Contributed by RP, 11-Jun-2020)

Ref Expression
Assertion relexp0eq AUBVdomAranA=domBranBAr0=Br0

Proof

Step Hyp Ref Expression
1 dfcleq domAranA=domBranBxxdomAranAxdomBranB
2 alcom yxxdomAranAxdomBranBxyxdomAranAxdomBranB
3 19.3v yxxdomAranAxdomBranBxxdomAranAxdomBranB
4 ax6ev yy=x
5 pm5.5 yy=xyy=xxdomAranAxdomBranBxdomAranAxdomBranB
6 4 5 ax-mp yy=xxdomAranAxdomBranBxdomAranAxdomBranB
7 19.23v yy=xxdomAranAxdomBranByy=xxdomAranAxdomBranB
8 19.3v yxdomAranAxdomBranBxdomAranAxdomBranB
9 6 7 8 3bitr4ri yxdomAranAxdomBranByy=xxdomAranAxdomBranB
10 pm5.32 y=xxdomAranAxdomBranBy=xxdomAranAy=xxdomBranB
11 ancom y=xxdomAranAxdomAranAy=x
12 ancom y=xxdomBranBxdomBranBy=x
13 11 12 bibi12i y=xxdomAranAy=xxdomBranBxdomAranAy=xxdomBranBy=x
14 10 13 bitri y=xxdomAranAxdomBranBxdomAranAy=xxdomBranBy=x
15 14 albii yy=xxdomAranAxdomBranByxdomAranAy=xxdomBranBy=x
16 9 15 bitri yxdomAranAxdomBranByxdomAranAy=xxdomBranBy=x
17 16 albii xyxdomAranAxdomBranBxyxdomAranAy=xxdomBranBy=x
18 2 3 17 3bitr3i xxdomAranAxdomBranBxyxdomAranAy=xxdomBranBy=x
19 1 18 bitri domAranA=domBranBxyxdomAranAy=xxdomBranBy=x
20 eqopab2bw xy|xdomAranAy=x=xy|xdomBranBy=xxyxdomAranAy=xxdomBranBy=x
21 opabresid IdomAranA=xy|xdomAranAy=x
22 21 eqcomi xy|xdomAranAy=x=IdomAranA
23 opabresid IdomBranB=xy|xdomBranBy=x
24 23 eqcomi xy|xdomBranBy=x=IdomBranB
25 22 24 eqeq12i xy|xdomAranAy=x=xy|xdomBranBy=xIdomAranA=IdomBranB
26 19 20 25 3bitr2i domAranA=domBranBIdomAranA=IdomBranB
27 relexp0g AUAr0=IdomAranA
28 relexp0g BVBr0=IdomBranB
29 27 28 eqeqan12d AUBVAr0=Br0IdomAranA=IdomBranB
30 26 29 bitr4id AUBVdomAranA=domBranBAr0=Br0