Metamath Proof Explorer


Theorem relexpfldd

Description: The field of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypothesis relexpfldd.1 φN0
Assertion relexpfldd φRrNR

Proof

Step Hyp Ref Expression
1 relexpfldd.1 φN0
2 relexpfld N0RVRrNR
3 1 2 sylan φRVRrNR
4 3 ex φRVRrNR
5 reldmrelexp Reldomr
6 5 ovprc1 ¬RVRrN=
7 6 unieqd ¬RVRrN=
8 uni0 =
9 7 8 eqtrdi ¬RVRrN=
10 9 unieqd ¬RVRrN=
11 10 8 eqtrdi ¬RVRrN=
12 0ss R
13 11 12 eqsstrdi ¬RVRrNR
14 4 13 pm2.61d1 φRrNR