Metamath Proof Explorer


Theorem relexpnul

Description: If the domain and range of powers of a relation are disjoint then the relation raised to the sum of those exponents is empty. (Contributed by RP, 1-Jun-2020)

Ref Expression
Assertion relexpnul RVRelRN0M0domRrNranRrM=RrN+M=

Proof

Step Hyp Ref Expression
1 coeq0 RrNRrM=domRrNranRrM=
2 simplr RVRelRN0M0RelR
3 simprl RVRelRN0M0N0
4 simprr RVRelRN0M0M0
5 2 3 4 relexpaddd RVRelRN0M0RrNRrM=RrN+M
6 5 eqeq1d RVRelRN0M0RrNRrM=RrN+M=
7 1 6 bitr3id RVRelRN0M0domRrNranRrM=RrN+M=