Metamath Proof Explorer


Theorem relexprnd

Description: The range of an exponentiation of a relation a subset of the relation's field. (Contributed by Drahflow, 12-Nov-2015) (Revised by RP, 30-May-2020) (Revised by AV, 12-Jul-2024)

Ref Expression
Hypothesis relexprnd.1 φN0
Assertion relexprnd φranRrNR

Proof

Step Hyp Ref Expression
1 relexprnd.1 φN0
2 relexprn N0RVranRrNR
3 1 2 sylan φRVranRrNR
4 3 ex φRVranRrNR
5 reldmrelexp Reldomr
6 5 ovprc1 ¬RVRrN=
7 6 rneqd ¬RVranRrN=ran
8 rn0 ran=
9 7 8 eqtrdi ¬RVranRrN=
10 0ss R
11 9 10 eqsstrdi ¬RVranRrNR
12 4 11 pm2.61d1 φranRrNR