Metamath Proof Explorer


Theorem reliun

Description: An indexed union is a relation iff each member of its indexed family is a relation. (Contributed by NM, 19-Dec-2008)

Ref Expression
Assertion reliun RelxABxARelB

Proof

Step Hyp Ref Expression
1 df-iun xAB=y|xAyB
2 1 releqi RelxABRely|xAyB
3 df-rel Rely|xAyBy|xAyBV×V
4 abss y|xAyBV×VyxAyByV×V
5 df-rel RelBBV×V
6 dfss2 BV×VyyByV×V
7 5 6 bitri RelByyByV×V
8 7 ralbii xARelBxAyyByV×V
9 ralcom4 xAyyByV×VyxAyByV×V
10 r19.23v xAyByV×VxAyByV×V
11 10 albii yxAyByV×VyxAyByV×V
12 8 9 11 3bitri xARelByxAyByV×V
13 4 12 bitr4i y|xAyBV×VxARelB
14 2 3 13 3bitri RelxABxARelB