Metamath Proof Explorer


Theorem relresdm1

Description: Restriction of a disjoint union to the domain of the first term. (Contributed by Thierry Arnoux, 9-Dec-2021)

Ref Expression
Assertion relresdm1 RelAdomAdomB=ABdomA=A

Proof

Step Hyp Ref Expression
1 resundir ABdomA=AdomABdomA
2 resdm RelAAdomA=A
3 2 adantr RelAdomAdomB=AdomA=A
4 dmres domBdomA=domAdomB
5 simpr RelAdomAdomB=domAdomB=
6 4 5 eqtrid RelAdomAdomB=domBdomA=
7 relres RelBdomA
8 reldm0 RelBdomABdomA=domBdomA=
9 7 8 ax-mp BdomA=domBdomA=
10 6 9 sylibr RelAdomAdomB=BdomA=
11 3 10 uneq12d RelAdomAdomB=AdomABdomA=A
12 un0 A=A
13 11 12 eqtrdi RelAdomAdomB=AdomABdomA=A
14 1 13 eqtrid RelAdomAdomB=ABdomA=A