Metamath Proof Explorer


Theorem relssres

Description: Simplification law for restriction. (Contributed by NM, 16-Aug-1994)

Ref Expression
Assertion relssres RelAdomABAB=A

Proof

Step Hyp Ref Expression
1 simpl RelAdomABRelA
2 vex xV
3 vex yV
4 2 3 opeldm xyAxdomA
5 ssel domABxdomAxB
6 4 5 syl5 domABxyAxB
7 6 ancrd domABxyAxBxyA
8 3 opelresi xyABxBxyA
9 7 8 syl6ibr domABxyAxyAB
10 9 adantl RelAdomABxyAxyAB
11 1 10 relssdv RelAdomABAAB
12 resss ABA
13 11 12 jctil RelAdomABABAAAB
14 eqss AB=AABAAAB
15 13 14 sylibr RelAdomABAB=A