Metamath Proof Explorer


Theorem reltxrnmnf

Description: For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020)

Ref Expression
Assertion reltxrnmnf x*−∞<xyy<x

Proof

Step Hyp Ref Expression
1 elxr x*xx=+∞x=−∞
2 reltre xyy<x
3 2 rspec xyy<x
4 3 a1d x−∞<xyy<x
5 0red x=+∞0
6 breq1 y=0y<x0<x
7 6 adantl x=+∞y=0y<x0<x
8 0ltpnf 0<+∞
9 breq2 x=+∞0<x0<+∞
10 8 9 mpbiri x=+∞0<x
11 5 7 10 rspcedvd x=+∞yy<x
12 11 a1d x=+∞−∞<xyy<x
13 breq2 x=−∞−∞<x−∞<−∞
14 mnfxr −∞*
15 nltmnf −∞*¬−∞<−∞
16 15 pm2.21d −∞*−∞<−∞yy<x
17 14 16 ax-mp −∞<−∞yy<x
18 13 17 syl6bi x=−∞−∞<xyy<x
19 4 12 18 3jaoi xx=+∞x=−∞−∞<xyy<x
20 1 19 sylbi x*−∞<xyy<x
21 20 rgen x*−∞<xyy<x