Metamath Proof Explorer


Theorem reltxrnmnf

Description: For all extended real numbers not being minus infinity there is a smaller real number. (Contributed by AV, 5-Sep-2020)

Ref Expression
Assertion reltxrnmnf
|- A. x e. RR* ( -oo < x -> E. y e. RR y < x )

Proof

Step Hyp Ref Expression
1 elxr
 |-  ( x e. RR* <-> ( x e. RR \/ x = +oo \/ x = -oo ) )
2 reltre
 |-  A. x e. RR E. y e. RR y < x
3 2 rspec
 |-  ( x e. RR -> E. y e. RR y < x )
4 3 a1d
 |-  ( x e. RR -> ( -oo < x -> E. y e. RR y < x ) )
5 0red
 |-  ( x = +oo -> 0 e. RR )
6 breq1
 |-  ( y = 0 -> ( y < x <-> 0 < x ) )
7 6 adantl
 |-  ( ( x = +oo /\ y = 0 ) -> ( y < x <-> 0 < x ) )
8 0ltpnf
 |-  0 < +oo
9 breq2
 |-  ( x = +oo -> ( 0 < x <-> 0 < +oo ) )
10 8 9 mpbiri
 |-  ( x = +oo -> 0 < x )
11 5 7 10 rspcedvd
 |-  ( x = +oo -> E. y e. RR y < x )
12 11 a1d
 |-  ( x = +oo -> ( -oo < x -> E. y e. RR y < x ) )
13 breq2
 |-  ( x = -oo -> ( -oo < x <-> -oo < -oo ) )
14 mnfxr
 |-  -oo e. RR*
15 nltmnf
 |-  ( -oo e. RR* -> -. -oo < -oo )
16 15 pm2.21d
 |-  ( -oo e. RR* -> ( -oo < -oo -> E. y e. RR y < x ) )
17 14 16 ax-mp
 |-  ( -oo < -oo -> E. y e. RR y < x )
18 13 17 syl6bi
 |-  ( x = -oo -> ( -oo < x -> E. y e. RR y < x ) )
19 4 12 18 3jaoi
 |-  ( ( x e. RR \/ x = +oo \/ x = -oo ) -> ( -oo < x -> E. y e. RR y < x ) )
20 1 19 sylbi
 |-  ( x e. RR* -> ( -oo < x -> E. y e. RR y < x ) )
21 20 rgen
 |-  A. x e. RR* ( -oo < x -> E. y e. RR y < x )