| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elxr |
|- ( x e. RR* <-> ( x e. RR \/ x = +oo \/ x = -oo ) ) |
| 2 |
|
reltre |
|- A. x e. RR E. y e. RR y < x |
| 3 |
2
|
rspec |
|- ( x e. RR -> E. y e. RR y < x ) |
| 4 |
3
|
a1d |
|- ( x e. RR -> ( -oo < x -> E. y e. RR y < x ) ) |
| 5 |
|
breq1 |
|- ( y = 0 -> ( y < x <-> 0 < x ) ) |
| 6 |
|
0red |
|- ( x = +oo -> 0 e. RR ) |
| 7 |
|
0ltpnf |
|- 0 < +oo |
| 8 |
|
breq2 |
|- ( x = +oo -> ( 0 < x <-> 0 < +oo ) ) |
| 9 |
7 8
|
mpbiri |
|- ( x = +oo -> 0 < x ) |
| 10 |
5 6 9
|
rspcedvdw |
|- ( x = +oo -> E. y e. RR y < x ) |
| 11 |
10
|
a1d |
|- ( x = +oo -> ( -oo < x -> E. y e. RR y < x ) ) |
| 12 |
|
breq2 |
|- ( x = -oo -> ( -oo < x <-> -oo < -oo ) ) |
| 13 |
|
mnfxr |
|- -oo e. RR* |
| 14 |
|
nltmnf |
|- ( -oo e. RR* -> -. -oo < -oo ) |
| 15 |
14
|
pm2.21d |
|- ( -oo e. RR* -> ( -oo < -oo -> E. y e. RR y < x ) ) |
| 16 |
13 15
|
ax-mp |
|- ( -oo < -oo -> E. y e. RR y < x ) |
| 17 |
12 16
|
biimtrdi |
|- ( x = -oo -> ( -oo < x -> E. y e. RR y < x ) ) |
| 18 |
4 11 17
|
3jaoi |
|- ( ( x e. RR \/ x = +oo \/ x = -oo ) -> ( -oo < x -> E. y e. RR y < x ) ) |
| 19 |
1 18
|
sylbi |
|- ( x e. RR* -> ( -oo < x -> E. y e. RR y < x ) ) |
| 20 |
19
|
rgen |
|- A. x e. RR* ( -oo < x -> E. y e. RR y < x ) |