| Step |
Hyp |
Ref |
Expression |
| 1 |
|
reltxrnmnf |
|- A. x e. RR* ( -oo < x -> E. z e. RR z < x ) |
| 2 |
|
xrltso |
|- < Or RR* |
| 3 |
2
|
a1i |
|- ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> < Or RR* ) |
| 4 |
|
mnfxr |
|- -oo e. RR* |
| 5 |
4
|
a1i |
|- ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> -oo e. RR* ) |
| 6 |
|
rexr |
|- ( y e. RR -> y e. RR* ) |
| 7 |
|
nltmnf |
|- ( y e. RR* -> -. y < -oo ) |
| 8 |
6 7
|
syl |
|- ( y e. RR -> -. y < -oo ) |
| 9 |
8
|
adantl |
|- ( ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) /\ y e. RR ) -> -. y < -oo ) |
| 10 |
|
breq2 |
|- ( x = y -> ( -oo < x <-> -oo < y ) ) |
| 11 |
|
breq2 |
|- ( x = y -> ( z < x <-> z < y ) ) |
| 12 |
11
|
rexbidv |
|- ( x = y -> ( E. z e. RR z < x <-> E. z e. RR z < y ) ) |
| 13 |
10 12
|
imbi12d |
|- ( x = y -> ( ( -oo < x -> E. z e. RR z < x ) <-> ( -oo < y -> E. z e. RR z < y ) ) ) |
| 14 |
13
|
rspcv |
|- ( y e. RR* -> ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> ( -oo < y -> E. z e. RR z < y ) ) ) |
| 15 |
14
|
com23 |
|- ( y e. RR* -> ( -oo < y -> ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> E. z e. RR z < y ) ) ) |
| 16 |
15
|
imp |
|- ( ( y e. RR* /\ -oo < y ) -> ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> E. z e. RR z < y ) ) |
| 17 |
16
|
impcom |
|- ( ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) /\ ( y e. RR* /\ -oo < y ) ) -> E. z e. RR z < y ) |
| 18 |
3 5 9 17
|
eqinfd |
|- ( A. x e. RR* ( -oo < x -> E. z e. RR z < x ) -> inf ( RR , RR* , < ) = -oo ) |
| 19 |
1 18
|
ax-mp |
|- inf ( RR , RR* , < ) = -oo |