| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reltxrnmnf | ⊢ ∀ 𝑥  ∈  ℝ* ( -∞  <  𝑥  →  ∃ 𝑧  ∈  ℝ 𝑧  <  𝑥 ) | 
						
							| 2 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 3 | 2 | a1i | ⊢ ( ∀ 𝑥  ∈  ℝ* ( -∞  <  𝑥  →  ∃ 𝑧  ∈  ℝ 𝑧  <  𝑥 )  →   <   Or  ℝ* ) | 
						
							| 4 |  | mnfxr | ⊢ -∞  ∈  ℝ* | 
						
							| 5 | 4 | a1i | ⊢ ( ∀ 𝑥  ∈  ℝ* ( -∞  <  𝑥  →  ∃ 𝑧  ∈  ℝ 𝑧  <  𝑥 )  →  -∞  ∈  ℝ* ) | 
						
							| 6 |  | rexr | ⊢ ( 𝑦  ∈  ℝ  →  𝑦  ∈  ℝ* ) | 
						
							| 7 |  | nltmnf | ⊢ ( 𝑦  ∈  ℝ*  →  ¬  𝑦  <  -∞ ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝑦  ∈  ℝ  →  ¬  𝑦  <  -∞ ) | 
						
							| 9 | 8 | adantl | ⊢ ( ( ∀ 𝑥  ∈  ℝ* ( -∞  <  𝑥  →  ∃ 𝑧  ∈  ℝ 𝑧  <  𝑥 )  ∧  𝑦  ∈  ℝ )  →  ¬  𝑦  <  -∞ ) | 
						
							| 10 |  | breq2 | ⊢ ( 𝑥  =  𝑦  →  ( -∞  <  𝑥  ↔  -∞  <  𝑦 ) ) | 
						
							| 11 |  | breq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑧  <  𝑥  ↔  𝑧  <  𝑦 ) ) | 
						
							| 12 | 11 | rexbidv | ⊢ ( 𝑥  =  𝑦  →  ( ∃ 𝑧  ∈  ℝ 𝑧  <  𝑥  ↔  ∃ 𝑧  ∈  ℝ 𝑧  <  𝑦 ) ) | 
						
							| 13 | 10 12 | imbi12d | ⊢ ( 𝑥  =  𝑦  →  ( ( -∞  <  𝑥  →  ∃ 𝑧  ∈  ℝ 𝑧  <  𝑥 )  ↔  ( -∞  <  𝑦  →  ∃ 𝑧  ∈  ℝ 𝑧  <  𝑦 ) ) ) | 
						
							| 14 | 13 | rspcv | ⊢ ( 𝑦  ∈  ℝ*  →  ( ∀ 𝑥  ∈  ℝ* ( -∞  <  𝑥  →  ∃ 𝑧  ∈  ℝ 𝑧  <  𝑥 )  →  ( -∞  <  𝑦  →  ∃ 𝑧  ∈  ℝ 𝑧  <  𝑦 ) ) ) | 
						
							| 15 | 14 | com23 | ⊢ ( 𝑦  ∈  ℝ*  →  ( -∞  <  𝑦  →  ( ∀ 𝑥  ∈  ℝ* ( -∞  <  𝑥  →  ∃ 𝑧  ∈  ℝ 𝑧  <  𝑥 )  →  ∃ 𝑧  ∈  ℝ 𝑧  <  𝑦 ) ) ) | 
						
							| 16 | 15 | imp | ⊢ ( ( 𝑦  ∈  ℝ*  ∧  -∞  <  𝑦 )  →  ( ∀ 𝑥  ∈  ℝ* ( -∞  <  𝑥  →  ∃ 𝑧  ∈  ℝ 𝑧  <  𝑥 )  →  ∃ 𝑧  ∈  ℝ 𝑧  <  𝑦 ) ) | 
						
							| 17 | 16 | impcom | ⊢ ( ( ∀ 𝑥  ∈  ℝ* ( -∞  <  𝑥  →  ∃ 𝑧  ∈  ℝ 𝑧  <  𝑥 )  ∧  ( 𝑦  ∈  ℝ*  ∧  -∞  <  𝑦 ) )  →  ∃ 𝑧  ∈  ℝ 𝑧  <  𝑦 ) | 
						
							| 18 | 3 5 9 17 | eqinfd | ⊢ ( ∀ 𝑥  ∈  ℝ* ( -∞  <  𝑥  →  ∃ 𝑧  ∈  ℝ 𝑧  <  𝑥 )  →  inf ( ℝ ,  ℝ* ,   <  )  =  -∞ ) | 
						
							| 19 | 1 18 | ax-mp | ⊢ inf ( ℝ ,  ℝ* ,   <  )  =  -∞ |