Metamath Proof Explorer


Theorem infmrp1

Description: The infimum of the positive reals is 0. (Contributed by AV, 5-Sep-2020)

Ref Expression
Assertion infmrp1 inf ( ℝ+ , ℝ , < ) = 0

Proof

Step Hyp Ref Expression
1 rpltrp 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ 𝑦 < 𝑥
2 ltso < Or ℝ
3 2 a1i ( ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ 𝑦 < 𝑥 → < Or ℝ )
4 0red ( ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ 𝑦 < 𝑥 → 0 ∈ ℝ )
5 0red ( 𝑧 ∈ ℝ+ → 0 ∈ ℝ )
6 rpre ( 𝑧 ∈ ℝ+𝑧 ∈ ℝ )
7 rpge0 ( 𝑧 ∈ ℝ+ → 0 ≤ 𝑧 )
8 5 6 7 lensymd ( 𝑧 ∈ ℝ+ → ¬ 𝑧 < 0 )
9 8 adantl ( ( ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ 𝑦 < 𝑥𝑧 ∈ ℝ+ ) → ¬ 𝑧 < 0 )
10 elrp ( 𝑧 ∈ ℝ+ ↔ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) )
11 breq2 ( 𝑥 = 𝑧 → ( 𝑦 < 𝑥𝑦 < 𝑧 ) )
12 11 rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑥 ↔ ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑧 ) )
13 12 rspcv ( 𝑧 ∈ ℝ+ → ( ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ 𝑦 < 𝑥 → ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑧 ) )
14 10 13 sylbir ( ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) → ( ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ 𝑦 < 𝑥 → ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑧 ) )
15 14 impcom ( ( ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ 𝑦 < 𝑥 ∧ ( 𝑧 ∈ ℝ ∧ 0 < 𝑧 ) ) → ∃ 𝑦 ∈ ℝ+ 𝑦 < 𝑧 )
16 3 4 9 15 eqinfd ( ∀ 𝑥 ∈ ℝ+𝑦 ∈ ℝ+ 𝑦 < 𝑥 → inf ( ℝ+ , ℝ , < ) = 0 )
17 1 16 ax-mp inf ( ℝ+ , ℝ , < ) = 0