Metamath Proof Explorer


Theorem infmremnf

Description: The infimum of the reals is minus infinity. (Contributed by AV, 5-Sep-2020)

Ref Expression
Assertion infmremnf sup*<=−∞

Proof

Step Hyp Ref Expression
1 reltxrnmnf x*−∞<xzz<x
2 xrltso <Or*
3 2 a1i x*−∞<xzz<x<Or*
4 mnfxr −∞*
5 4 a1i x*−∞<xzz<x−∞*
6 rexr yy*
7 nltmnf y*¬y<−∞
8 6 7 syl y¬y<−∞
9 8 adantl x*−∞<xzz<xy¬y<−∞
10 breq2 x=y−∞<x−∞<y
11 breq2 x=yz<xz<y
12 11 rexbidv x=yzz<xzz<y
13 10 12 imbi12d x=y−∞<xzz<x−∞<yzz<y
14 13 rspcv y*x*−∞<xzz<x−∞<yzz<y
15 14 com23 y*−∞<yx*−∞<xzz<xzz<y
16 15 imp y*−∞<yx*−∞<xzz<xzz<y
17 16 impcom x*−∞<xzz<xy*−∞<yzz<y
18 3 5 9 17 eqinfd x*−∞<xzz<xsup*<=−∞
19 1 18 ax-mp sup*<=−∞