Metamath Proof Explorer


Theorem repswsymballbi

Description: A word is a "repeated symbol word" iff each of its symbols equals the first symbol of the word. (Contributed by AV, 10-Nov-2018)

Ref Expression
Assertion repswsymballbi WWordVW=W0repeatSWi0..^WWi=W0

Proof

Step Hyp Ref Expression
1 fveq2 W=W=
2 hash0 =0
3 1 2 eqtrdi W=W=0
4 fvex W0V
5 repsw0 W0VW0repeatS0=
6 4 5 ax-mp W0repeatS0=
7 6 eqcomi =W0repeatS0
8 simpr W=0W=W=
9 oveq2 W=0W0repeatSW=W0repeatS0
10 9 adantr W=0W=W0repeatSW=W0repeatS0
11 7 8 10 3eqtr4a W=0W=W=W0repeatSW
12 ral0 iWi=W0
13 oveq2 W=00..^W=0..^0
14 fzo0 0..^0=
15 13 14 eqtrdi W=00..^W=
16 15 raleqdv W=0i0..^WWi=W0iWi=W0
17 12 16 mpbiri W=0i0..^WWi=W0
18 17 adantr W=0W=i0..^WWi=W0
19 11 18 2thd W=0W=W=W0repeatSWi0..^WWi=W0
20 3 19 mpancom W=W=W0repeatSWi0..^WWi=W0
21 20 a1d W=WWordVW=W0repeatSWi0..^WWi=W0
22 df-3an WWordVW=Wi0..^WWi=W0WWordVW=Wi0..^WWi=W0
23 22 a1i WWWordVWWordVW=Wi0..^WWi=W0WWordVW=Wi0..^WWi=W0
24 fstwrdne WWordVWW0V
25 24 ancoms WWWordVW0V
26 lencl WWordVW0
27 26 adantl WWWordVW0
28 repsdf2 W0VW0W=W0repeatSWWWordVW=Wi0..^WWi=W0
29 25 27 28 syl2anc WWWordVW=W0repeatSWWWordVW=Wi0..^WWi=W0
30 simpr WWWordVWWordV
31 eqidd WWWordVW=W
32 30 31 jca WWWordVWWordVW=W
33 32 biantrurd WWWordVi0..^WWi=W0WWordVW=Wi0..^WWi=W0
34 23 29 33 3bitr4d WWWordVW=W0repeatSWi0..^WWi=W0
35 34 ex WWWordVW=W0repeatSWi0..^WWi=W0
36 21 35 pm2.61ine WWordVW=W0repeatSWi0..^WWi=W0