Metamath Proof Explorer


Theorem resqrtthlem

Description: Lemma for resqrtth . (Contributed by Mario Carneiro, 9-Jul-2013)

Ref Expression
Assertion resqrtthlem A0AA2=A0AiA+

Proof

Step Hyp Ref Expression
1 recn AA
2 sqrtval AA=ιx|x2=A0xix+
3 2 eqcomd Aιx|x2=A0xix+=A
4 1 3 syl Aιx|x2=A0xix+=A
5 4 adantr A0Aιx|x2=A0xix+=A
6 resqrtcl A0AA
7 6 recnd A0AA
8 resqreu A0A∃!xx2=A0xix+
9 oveq1 x=Ax2=A2
10 9 eqeq1d x=Ax2=AA2=A
11 fveq2 x=Ax=A
12 11 breq2d x=A0x0A
13 oveq2 x=Aix=iA
14 neleq1 ix=iAix+iA+
15 13 14 syl x=Aix+iA+
16 10 12 15 3anbi123d x=Ax2=A0xix+A2=A0AiA+
17 16 riota2 A∃!xx2=A0xix+A2=A0AiA+ιx|x2=A0xix+=A
18 7 8 17 syl2anc A0AA2=A0AiA+ιx|x2=A0xix+=A
19 5 18 mpbird A0AA2=A0AiA+