Metamath Proof Explorer


Theorem resseqnbas

Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014) (Revised by Mario Carneiro, 2-Dec-2014) (Revised by AV, 19-Oct-2024)

Ref Expression
Hypotheses resseqnbas.r R=W𝑠A
resseqnbas.e C=EW
resseqnbas.f E=SlotEndx
resseqnbas.n EndxBasendx
Assertion resseqnbas AVC=ER

Proof

Step Hyp Ref Expression
1 resseqnbas.r R=W𝑠A
2 resseqnbas.e C=EW
3 resseqnbas.f E=SlotEndx
4 resseqnbas.n EndxBasendx
5 eqid BaseW=BaseW
6 1 5 ressid2 BaseWAWVAVR=W
7 6 fveq2d BaseWAWVAVER=EW
8 7 3expib BaseWAWVAVER=EW
9 1 5 ressval2 ¬BaseWAWVAVR=WsSetBasendxABaseW
10 9 fveq2d ¬BaseWAWVAVER=EWsSetBasendxABaseW
11 3 4 setsnid EW=EWsSetBasendxABaseW
12 10 11 eqtr4di ¬BaseWAWVAVER=EW
13 12 3expib ¬BaseWAWVAVER=EW
14 8 13 pm2.61i WVAVER=EW
15 3 str0 =E
16 15 eqcomi E=
17 reldmress Reldom𝑠
18 16 1 17 oveqprc ¬WVEW=ER
19 18 eqcomd ¬WVER=EW
20 19 adantr ¬WVAVER=EW
21 14 20 pm2.61ian AVER=EW
22 2 21 eqtr4id AVC=ER