Metamath Proof Explorer


Theorem resseqnbas

Description: The components of an extensible structure except the base set remain unchanged on a structure restriction. (Contributed by Mario Carneiro, 26-Nov-2014) (Revised by Mario Carneiro, 2-Dec-2014) (Revised by AV, 19-Oct-2024)

Ref Expression
Hypotheses resseqnbas.r R = W 𝑠 A
resseqnbas.e C = E W
resseqnbas.f E = Slot E ndx
resseqnbas.n E ndx Base ndx
Assertion resseqnbas A V C = E R

Proof

Step Hyp Ref Expression
1 resseqnbas.r R = W 𝑠 A
2 resseqnbas.e C = E W
3 resseqnbas.f E = Slot E ndx
4 resseqnbas.n E ndx Base ndx
5 eqid Base W = Base W
6 1 5 ressid2 Base W A W V A V R = W
7 6 fveq2d Base W A W V A V E R = E W
8 7 3expib Base W A W V A V E R = E W
9 1 5 ressval2 ¬ Base W A W V A V R = W sSet Base ndx A Base W
10 9 fveq2d ¬ Base W A W V A V E R = E W sSet Base ndx A Base W
11 3 4 setsnid E W = E W sSet Base ndx A Base W
12 10 11 eqtr4di ¬ Base W A W V A V E R = E W
13 12 3expib ¬ Base W A W V A V E R = E W
14 8 13 pm2.61i W V A V E R = E W
15 reldmress Rel dom 𝑠
16 15 ovprc1 ¬ W V W 𝑠 A =
17 1 16 syl5eq ¬ W V R =
18 17 fveq2d ¬ W V E R = E
19 3 str0 = E
20 18 19 eqtr4di ¬ W V E R =
21 fvprc ¬ W V E W =
22 20 21 eqtr4d ¬ W V E R = E W
23 22 adantr ¬ W V A V E R = E W
24 14 23 pm2.61ian A V E R = E W
25 2 24 eqtr4id A V C = E R