Metamath Proof Explorer


Theorem restcls2

Description: A closed set in a subspace topology is the closure in the original topology intersecting with the subspace. (Contributed by Zhi Wang, 2-Sep-2024)

Ref Expression
Hypotheses restcls2.1 φJTop
restcls2.2 φX=J
restcls2.3 φYX
restcls2.4 φK=J𝑡Y
restcls2.5 φSClsdK
Assertion restcls2 φS=clsJSY

Proof

Step Hyp Ref Expression
1 restcls2.1 φJTop
2 restcls2.2 φX=J
3 restcls2.3 φYX
4 restcls2.4 φK=J𝑡Y
5 restcls2.5 φSClsdK
6 4 fveq2d φclsK=clsJ𝑡Y
7 6 fveq1d φclsKS=clsJ𝑡YS
8 cldcls SClsdKclsKS=S
9 5 8 syl φclsKS=S
10 3 2 sseqtrd φYJ
11 1 2 3 4 5 restcls2lem φSY
12 eqid J=J
13 eqid J𝑡Y=J𝑡Y
14 12 13 restcls JTopYJSYclsJ𝑡YS=clsJSY
15 1 10 11 14 syl3anc φclsJ𝑡YS=clsJSY
16 7 9 15 3eqtr3d φS=clsJSY