Description: A subset belongs in the space it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | restsubel.1 | |
|
restsubel.2 | |
||
restsubel.3 | |
||
Assertion | restsubel | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restsubel.1 | |
|
2 | restsubel.2 | |
|
3 | restsubel.3 | |
|
4 | ineq1 | |
|
5 | 4 | eqeq2d | |
6 | 5 | adantl | |
7 | incom | |
|
8 | 7 | a1i | |
9 | df-ss | |
|
10 | 3 9 | sylib | |
11 | 8 10 | eqtrd | |
12 | 11 | eqcomd | |
13 | 2 6 12 | rspcedvd | |
14 | 2 3 | ssexd | |
15 | elrest | |
|
16 | 1 14 15 | syl2anc | |
17 | 13 16 | mpbird | |