Metamath Proof Explorer


Theorem restsubel

Description: A subset belongs in the space it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses restsubel.1 φJV
restsubel.2 φJJ
restsubel.3 φAJ
Assertion restsubel φAJ𝑡A

Proof

Step Hyp Ref Expression
1 restsubel.1 φJV
2 restsubel.2 φJJ
3 restsubel.3 φAJ
4 ineq1 x=JxA=JA
5 4 eqeq2d x=JA=xAA=JA
6 5 adantl φx=JA=xAA=JA
7 incom JA=AJ
8 7 a1i φJA=AJ
9 df-ss AJAJ=A
10 3 9 sylib φAJ=A
11 8 10 eqtrd φJA=A
12 11 eqcomd φA=JA
13 2 6 12 rspcedvd φxJA=xA
14 2 3 ssexd φAV
15 elrest JVAVAJ𝑡AxJA=xA
16 1 14 15 syl2anc φAJ𝑡AxJA=xA
17 13 16 mpbird φAJ𝑡A