Metamath Proof Explorer


Theorem resvsca

Description: Base set of a structure restriction. (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Hypotheses resvsca.r R=W𝑣A
resvsca.f F=ScalarW
resvsca.b B=BaseF
Assertion resvsca AVF𝑠A=ScalarR

Proof

Step Hyp Ref Expression
1 resvsca.r R=W𝑣A
2 resvsca.f F=ScalarW
3 resvsca.b B=BaseF
4 2 fvexi FV
5 eqid F𝑠A=F𝑠A
6 5 3 ressid2 BAFVAVF𝑠A=F
7 4 6 mp3an2 BAAVF𝑠A=F
8 7 3adant2 BAWVAVF𝑠A=F
9 1 2 3 resvid2 BAWVAVR=W
10 9 fveq2d BAWVAVScalarR=ScalarW
11 2 8 10 3eqtr4a BAWVAVF𝑠A=ScalarR
12 11 3expib BAWVAVF𝑠A=ScalarR
13 simp2 ¬BAWVAVWV
14 ovex F𝑠AV
15 scaid Scalar=SlotScalarndx
16 15 setsid WVF𝑠AVF𝑠A=ScalarWsSetScalarndxF𝑠A
17 13 14 16 sylancl ¬BAWVAVF𝑠A=ScalarWsSetScalarndxF𝑠A
18 1 2 3 resvval2 ¬BAWVAVR=WsSetScalarndxF𝑠A
19 18 fveq2d ¬BAWVAVScalarR=ScalarWsSetScalarndxF𝑠A
20 17 19 eqtr4d ¬BAWVAVF𝑠A=ScalarR
21 20 3expib ¬BAWVAVF𝑠A=ScalarR
22 12 21 pm2.61i WVAVF𝑠A=ScalarR
23 0fv Scalarndx=
24 0ex V
25 24 15 strfvn Scalar=Scalarndx
26 ress0 𝑠A=
27 23 25 26 3eqtr4ri 𝑠A=Scalar
28 fvprc ¬WVScalarW=
29 2 28 eqtrid ¬WVF=
30 29 oveq1d ¬WVF𝑠A=𝑠A
31 reldmresv Reldom𝑣
32 31 ovprc1 ¬WVW𝑣A=
33 1 32 eqtrid ¬WVR=
34 33 fveq2d ¬WVScalarR=Scalar
35 27 30 34 3eqtr4a ¬WVF𝑠A=ScalarR
36 35 adantr ¬WVAVF𝑠A=ScalarR
37 22 36 pm2.61ian AVF𝑠A=ScalarR