Metamath Proof Explorer


Theorem reu8

Description: Restricted uniqueness using implicit substitution. (Contributed by NM, 24-Oct-2006)

Ref Expression
Hypothesis rmo4.1 x=yφψ
Assertion reu8 ∃!xAφxAφyAψx=y

Proof

Step Hyp Ref Expression
1 rmo4.1 x=yφψ
2 1 cbvreuvw ∃!xAφ∃!yAψ
3 reu6 ∃!yAψxAyAψy=x
4 dfbi2 ψy=xψy=xy=xψ
5 4 ralbii yAψy=xyAψy=xy=xψ
6 r19.26 yAψy=xy=xψyAψy=xyAy=xψ
7 ancom φyAψx=yyAψx=yφ
8 equcom x=yy=x
9 8 imbi2i ψx=yψy=x
10 9 ralbii yAψx=yyAψy=x
11 10 a1i xAyAψx=yyAψy=x
12 biimt xAφxAφ
13 df-ral yAy=xψyyAy=xψ
14 bi2.04 yAy=xψy=xyAψ
15 14 albii yyAy=xψyy=xyAψ
16 eleq1w x=yxAyA
17 16 1 imbi12d x=yxAφyAψ
18 17 bicomd x=yyAψxAφ
19 18 equcoms y=xyAψxAφ
20 19 equsalvw yy=xyAψxAφ
21 13 15 20 3bitrri xAφyAy=xψ
22 12 21 bitrdi xAφyAy=xψ
23 11 22 anbi12d xAyAψx=yφyAψy=xyAy=xψ
24 7 23 bitrid xAφyAψx=yyAψy=xyAy=xψ
25 6 24 bitr4id xAyAψy=xy=xψφyAψx=y
26 5 25 bitrid xAyAψy=xφyAψx=y
27 26 rexbiia xAyAψy=xxAφyAψx=y
28 2 3 27 3bitri ∃!xAφxAφyAψx=y