Metamath Proof Explorer


Theorem reust

Description: The Uniform structure of the real numbers. (Contributed by Thierry Arnoux, 14-Feb-2018)

Ref Expression
Assertion reust UnifSt fld = metUnif dist fld 2

Proof

Step Hyp Ref Expression
1 df-refld fld = fld 𝑠
2 1 fveq2i UnifSt fld = UnifSt fld 𝑠
3 reex V
4 ressuss V UnifSt fld 𝑠 = UnifSt fld 𝑡 2
5 3 4 ax-mp UnifSt fld 𝑠 = UnifSt fld 𝑡 2
6 eqid UnifSt fld = UnifSt fld
7 6 cnflduss UnifSt fld = metUnif abs
8 7 oveq1i UnifSt fld 𝑡 2 = metUnif abs 𝑡 2
9 2 5 8 3eqtri UnifSt fld = metUnif abs 𝑡 2
10 0re 0
11 10 ne0ii
12 cnxmet abs ∞Met
13 xmetpsmet abs ∞Met abs PsMet
14 12 13 ax-mp abs PsMet
15 ax-resscn
16 restmetu abs PsMet metUnif abs 𝑡 2 = metUnif abs 2
17 11 14 15 16 mp3an metUnif abs 𝑡 2 = metUnif abs 2
18 reds abs = dist fld
19 18 reseq1i abs 2 = dist fld 2
20 19 fveq2i metUnif abs 2 = metUnif dist fld 2
21 9 17 20 3eqtri UnifSt fld = metUnif dist fld 2