Metamath Proof Explorer


Theorem reust

Description: The Uniform structure of the real numbers. (Contributed by Thierry Arnoux, 14-Feb-2018)

Ref Expression
Assertion reust UnifStfld=metUnifdistfld2

Proof

Step Hyp Ref Expression
1 df-refld fld=fld𝑠
2 1 fveq2i UnifStfld=UnifStfld𝑠
3 reex V
4 ressuss VUnifStfld𝑠=UnifStfld𝑡2
5 3 4 ax-mp UnifStfld𝑠=UnifStfld𝑡2
6 eqid UnifStfld=UnifStfld
7 6 cnflduss UnifStfld=metUnifabs
8 7 oveq1i UnifStfld𝑡2=metUnifabs𝑡2
9 2 5 8 3eqtri UnifStfld=metUnifabs𝑡2
10 0re 0
11 10 ne0ii
12 cnxmet abs∞Met
13 xmetpsmet abs∞MetabsPsMet
14 12 13 ax-mp absPsMet
15 ax-resscn
16 restmetu absPsMetmetUnifabs𝑡2=metUnifabs2
17 11 14 15 16 mp3an metUnifabs𝑡2=metUnifabs2
18 reds abs=distfld
19 18 reseq1i abs2=distfld2
20 19 fveq2i metUnifabs2=metUnifdistfld2
21 9 17 20 3eqtri UnifStfld=metUnifdistfld2