Metamath Proof Explorer


Theorem revcl

Description: The reverse of a word is a word. (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Assertion revcl WWordAreverseWWordA

Proof

Step Hyp Ref Expression
1 revval WWordAreverseW=x0..^WWW-1-x
2 wrdf WWordAW:0..^WA
3 2 adantr WWordAx0..^WW:0..^WA
4 simpr WWordAx0..^Wx0..^W
5 lencl WWordAW0
6 5 adantr WWordAx0..^WW0
7 6 nn0zd WWordAx0..^WW
8 fzoval W0..^W=0W1
9 7 8 syl WWordAx0..^W0..^W=0W1
10 4 9 eleqtrd WWordAx0..^Wx0W1
11 fznn0sub2 x0W1W-1-x0W1
12 10 11 syl WWordAx0..^WW-1-x0W1
13 12 9 eleqtrrd WWordAx0..^WW-1-x0..^W
14 3 13 ffvelcdmd WWordAx0..^WWW-1-xA
15 14 fmpttd WWordAx0..^WWW-1-x:0..^WA
16 iswrdi x0..^WWW-1-x:0..^WAx0..^WWW-1-xWordA
17 15 16 syl WWordAx0..^WWW-1-xWordA
18 1 17 eqeltrd WWordAreverseWWordA