Metamath Proof Explorer


Theorem revs1

Description: Singleton words are their own reverses. (Contributed by Stefan O'Rear, 26-Aug-2015) (Revised by Mario Carneiro, 26-Feb-2016)

Ref Expression
Assertion revs1 reverse⟨“S”⟩=⟨“S”⟩

Proof

Step Hyp Ref Expression
1 s1cli ⟨“S”⟩WordV
2 s1len ⟨“S”⟩=1
3 1nn 1
4 2 3 eqeltri ⟨“S”⟩
5 lbfzo0 00..^⟨“S”⟩⟨“S”⟩
6 4 5 mpbir 00..^⟨“S”⟩
7 revfv ⟨“S”⟩WordV00..^⟨“S”⟩reverse⟨“S”⟩0=⟨“S”⟩⟨“S”⟩-1-0
8 1 6 7 mp2an reverse⟨“S”⟩0=⟨“S”⟩⟨“S”⟩-1-0
9 2 oveq1i ⟨“S”⟩1=11
10 1m1e0 11=0
11 9 10 eqtri ⟨“S”⟩1=0
12 11 oveq1i ⟨“S”⟩-1-0=00
13 0m0e0 00=0
14 12 13 eqtri ⟨“S”⟩-1-0=0
15 14 fveq2i ⟨“S”⟩⟨“S”⟩-1-0=⟨“S”⟩0
16 ids1 ⟨“S”⟩=⟨“IS”⟩
17 16 fveq1i ⟨“S”⟩0=⟨“IS”⟩0
18 fvex ISV
19 s1fv ISV⟨“IS”⟩0=IS
20 18 19 ax-mp ⟨“IS”⟩0=IS
21 17 20 eqtri ⟨“S”⟩0=IS
22 15 21 eqtri ⟨“S”⟩⟨“S”⟩-1-0=IS
23 8 22 eqtri reverse⟨“S”⟩0=IS
24 s1eq reverse⟨“S”⟩0=IS⟨“reverse⟨“S”⟩0”⟩=⟨“IS”⟩
25 23 24 ax-mp ⟨“reverse⟨“S”⟩0”⟩=⟨“IS”⟩
26 revcl ⟨“S”⟩WordVreverse⟨“S”⟩WordV
27 1 26 ax-mp reverse⟨“S”⟩WordV
28 revlen ⟨“S”⟩WordVreverse⟨“S”⟩=⟨“S”⟩
29 1 28 ax-mp reverse⟨“S”⟩=⟨“S”⟩
30 29 2 eqtri reverse⟨“S”⟩=1
31 eqs1 reverse⟨“S”⟩WordVreverse⟨“S”⟩=1reverse⟨“S”⟩=⟨“reverse⟨“S”⟩0”⟩
32 27 30 31 mp2an reverse⟨“S”⟩=⟨“reverse⟨“S”⟩0”⟩
33 25 32 16 3eqtr4i reverse⟨“S”⟩=⟨“S”⟩