Description: A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | rex2dom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |
|
2 | prssi | |
|
3 | df2o3 | |
|
4 | 0ex | |
|
5 | 4 | a1i | |
6 | 1oex | |
|
7 | 6 | a1i | |
8 | vex | |
|
9 | 8 | a1i | |
10 | vex | |
|
11 | 10 | a1i | |
12 | 1n0 | |
|
13 | 12 | necomi | |
14 | 13 | a1i | |
15 | id | |
|
16 | 5 7 9 11 14 15 | en2prd | |
17 | 3 16 | eqbrtrid | |
18 | endom | |
|
19 | 17 18 | syl | |
20 | domssr | |
|
21 | 20 | 3expib | |
22 | 2 19 21 | syl2ani | |
23 | 22 | expd | |
24 | 23 | rexlimdvv | |
25 | 1 24 | syl | |
26 | 25 | imp | |