Metamath Proof Explorer


Theorem rex2dom

Description: A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024)

Ref Expression
Assertion rex2dom AVxAyAxy2𝑜A

Proof

Step Hyp Ref Expression
1 elex AVAV
2 prssi xAyAxyA
3 df2o3 2𝑜=1𝑜
4 0ex V
5 4 a1i xyV
6 1oex 1𝑜V
7 6 a1i xy1𝑜V
8 vex xV
9 8 a1i xyxV
10 vex yV
11 10 a1i xyyV
12 1n0 1𝑜
13 12 necomi 1𝑜
14 13 a1i xy1𝑜
15 id xyxy
16 5 7 9 11 14 15 en2prd xy1𝑜xy
17 3 16 eqbrtrid xy2𝑜xy
18 endom 2𝑜xy2𝑜xy
19 17 18 syl xy2𝑜xy
20 domssr AVxyA2𝑜xy2𝑜A
21 20 3expib AVxyA2𝑜xy2𝑜A
22 2 19 21 syl2ani AVxAyAxy2𝑜A
23 22 expd AVxAyAxy2𝑜A
24 23 rexlimdvv AVxAyAxy2𝑜A
25 1 24 syl AVxAyAxy2𝑜A
26 25 imp AVxAyAxy2𝑜A