Description: The real numbers are equinumerous to their own Cartesian product, even though it is not necessarily true that RR is well-orderable (so we cannot use infxpidm2 directly). (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 16-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | rexpen | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpnnen | |
|
2 | nnenom | |
|
3 | pwen | |
|
4 | 2 3 | ax-mp | |
5 | 1 4 | entri | |
6 | omex | |
|
7 | 6 | pw2en | |
8 | 5 7 | entri | |
9 | xpen | |
|
10 | 8 8 9 | mp2an | |
11 | 2onn | |
|
12 | 11 | elexi | |
13 | 12 12 6 | xpmapen | |
14 | 13 | ensymi | |
15 | ssid | |
|
16 | ssnnfi | |
|
17 | 11 15 16 | mp2an | |
18 | xpfi | |
|
19 | 17 17 18 | mp2an | |
20 | isfinite | |
|
21 | 19 20 | mpbi | |
22 | 6 | canth2 | |
23 | sdomtr | |
|
24 | 21 22 23 | mp2an | |
25 | sdomdom | |
|
26 | 24 25 | ax-mp | |
27 | domentr | |
|
28 | 26 7 27 | mp2an | |
29 | mapdom1 | |
|
30 | 28 29 | ax-mp | |
31 | mapxpen | |
|
32 | 11 6 6 31 | mp3an | |
33 | 12 | enref | |
34 | xpomen | |
|
35 | mapen | |
|
36 | 33 34 35 | mp2an | |
37 | 32 36 | entri | |
38 | domentr | |
|
39 | 30 37 38 | mp2an | |
40 | endomtr | |
|
41 | 14 39 40 | mp2an | |
42 | ovex | |
|
43 | 0ex | |
|
44 | 42 43 | xpsnen | |
45 | 44 | ensymi | |
46 | snfi | |
|
47 | isfinite | |
|
48 | 46 47 | mpbi | |
49 | sdomtr | |
|
50 | 48 22 49 | mp2an | |
51 | sdomdom | |
|
52 | 50 51 | ax-mp | |
53 | domentr | |
|
54 | 52 7 53 | mp2an | |
55 | 42 | xpdom2 | |
56 | 54 55 | ax-mp | |
57 | endomtr | |
|
58 | 45 56 57 | mp2an | |
59 | sbth | |
|
60 | 41 58 59 | mp2an | |
61 | 10 60 | entri | |
62 | 61 8 | entr4i | |