Metamath Proof Explorer


Theorem rexpen

Description: The real numbers are equinumerous to their own Cartesian product, even though it is not necessarily true that RR is well-orderable (so we cannot use infxpidm2 directly). (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 16-Jun-2013)

Ref Expression
Assertion rexpen 2

Proof

Step Hyp Ref Expression
1 rpnnen 𝒫
2 nnenom ω
3 pwen ω𝒫𝒫ω
4 2 3 ax-mp 𝒫𝒫ω
5 1 4 entri 𝒫ω
6 omex ωV
7 6 pw2en 𝒫ω2𝑜ω
8 5 7 entri 2𝑜ω
9 xpen 2𝑜ω2𝑜ω22𝑜ω×2𝑜ω
10 8 8 9 mp2an 22𝑜ω×2𝑜ω
11 2onn 2𝑜ω
12 11 elexi 2𝑜V
13 12 12 6 xpmapen 2𝑜×2𝑜ω2𝑜ω×2𝑜ω
14 13 ensymi 2𝑜ω×2𝑜ω2𝑜×2𝑜ω
15 ssid 2𝑜2𝑜
16 ssnnfi 2𝑜ω2𝑜2𝑜2𝑜Fin
17 11 15 16 mp2an 2𝑜Fin
18 xpfi 2𝑜Fin2𝑜Fin2𝑜×2𝑜Fin
19 17 17 18 mp2an 2𝑜×2𝑜Fin
20 isfinite 2𝑜×2𝑜Fin2𝑜×2𝑜ω
21 19 20 mpbi 2𝑜×2𝑜ω
22 6 canth2 ω𝒫ω
23 sdomtr 2𝑜×2𝑜ωω𝒫ω2𝑜×2𝑜𝒫ω
24 21 22 23 mp2an 2𝑜×2𝑜𝒫ω
25 sdomdom 2𝑜×2𝑜𝒫ω2𝑜×2𝑜𝒫ω
26 24 25 ax-mp 2𝑜×2𝑜𝒫ω
27 domentr 2𝑜×2𝑜𝒫ω𝒫ω2𝑜ω2𝑜×2𝑜2𝑜ω
28 26 7 27 mp2an 2𝑜×2𝑜2𝑜ω
29 mapdom1 2𝑜×2𝑜2𝑜ω2𝑜×2𝑜ω2𝑜ωω
30 28 29 ax-mp 2𝑜×2𝑜ω2𝑜ωω
31 mapxpen 2𝑜ωωVωV2𝑜ωω2𝑜ω×ω
32 11 6 6 31 mp3an 2𝑜ωω2𝑜ω×ω
33 12 enref 2𝑜2𝑜
34 xpomen ω×ωω
35 mapen 2𝑜2𝑜ω×ωω2𝑜ω×ω2𝑜ω
36 33 34 35 mp2an 2𝑜ω×ω2𝑜ω
37 32 36 entri 2𝑜ωω2𝑜ω
38 domentr 2𝑜×2𝑜ω2𝑜ωω2𝑜ωω2𝑜ω2𝑜×2𝑜ω2𝑜ω
39 30 37 38 mp2an 2𝑜×2𝑜ω2𝑜ω
40 endomtr 2𝑜ω×2𝑜ω2𝑜×2𝑜ω2𝑜×2𝑜ω2𝑜ω2𝑜ω×2𝑜ω2𝑜ω
41 14 39 40 mp2an 2𝑜ω×2𝑜ω2𝑜ω
42 ovex 2𝑜ωV
43 0ex V
44 42 43 xpsnen 2𝑜ω×2𝑜ω
45 44 ensymi 2𝑜ω2𝑜ω×
46 snfi Fin
47 isfinite Finω
48 46 47 mpbi ω
49 sdomtr ωω𝒫ω𝒫ω
50 48 22 49 mp2an 𝒫ω
51 sdomdom 𝒫ω𝒫ω
52 50 51 ax-mp 𝒫ω
53 domentr 𝒫ω𝒫ω2𝑜ω2𝑜ω
54 52 7 53 mp2an 2𝑜ω
55 42 xpdom2 2𝑜ω2𝑜ω×2𝑜ω×2𝑜ω
56 54 55 ax-mp 2𝑜ω×2𝑜ω×2𝑜ω
57 endomtr 2𝑜ω2𝑜ω×2𝑜ω×2𝑜ω×2𝑜ω2𝑜ω2𝑜ω×2𝑜ω
58 45 56 57 mp2an 2𝑜ω2𝑜ω×2𝑜ω
59 sbth 2𝑜ω×2𝑜ω2𝑜ω2𝑜ω2𝑜ω×2𝑜ω2𝑜ω×2𝑜ω2𝑜ω
60 41 58 59 mp2an 2𝑜ω×2𝑜ω2𝑜ω
61 10 60 entri 22𝑜ω
62 61 8 entr4i 2