Metamath Proof Explorer


Theorem rexsub

Description: Extended real subtraction when both arguments are real. (Contributed by Mario Carneiro, 23-Aug-2015)

Ref Expression
Assertion rexsub ABA+𝑒B=AB

Proof

Step Hyp Ref Expression
1 rexneg BB=B
2 1 adantl ABB=B
3 2 oveq2d ABA+𝑒B=A+𝑒B
4 renegcl BB
5 rexadd ABA+𝑒B=A+B
6 4 5 sylan2 ABA+𝑒B=A+B
7 recn AA
8 recn BB
9 negsub ABA+B=AB
10 7 8 9 syl2an ABA+B=AB
11 3 6 10 3eqtrd ABA+𝑒B=AB