Metamath Proof Explorer


Theorem rhmsubclem2

Description: Lemma 2 for rhmsubc . (Contributed by AV, 2-Mar-2020)

Ref Expression
Hypotheses rngcrescrhm.u φ U V
rngcrescrhm.c C = RngCat U
rngcrescrhm.r φ R = Ring U
rngcrescrhm.h H = RingHom R × R
Assertion rhmsubclem2 φ X R Y R X H Y = X RingHom Y

Proof

Step Hyp Ref Expression
1 rngcrescrhm.u φ U V
2 rngcrescrhm.c C = RngCat U
3 rngcrescrhm.r φ R = Ring U
4 rngcrescrhm.h H = RingHom R × R
5 opelxpi X R Y R X Y R × R
6 5 3adant1 φ X R Y R X Y R × R
7 6 fvresd φ X R Y R RingHom R × R X Y = RingHom X Y
8 df-ov X H Y = H X Y
9 4 fveq1i H X Y = RingHom R × R X Y
10 8 9 eqtri X H Y = RingHom R × R X Y
11 df-ov X RingHom Y = RingHom X Y
12 7 10 11 3eqtr4g φ X R Y R X H Y = X RingHom Y