Metamath Proof Explorer


Theorem ring2idlqusb

Description: A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 20-Feb-2025)

Ref Expression
Assertion ring2idlqusb RRngRRingi2IdealRR𝑠iRingR/𝑠R~QGiRing

Proof

Step Hyp Ref Expression
1 ring2idlqus RRingi2IdealRR𝑠iRingR/𝑠R~QGiRing
2 simpll RRngi2IdealRR𝑠iRingRRng
3 simplr RRngi2IdealRR𝑠iRingi2IdealR
4 eqid R𝑠i=R𝑠i
5 simpr RRngi2IdealRR𝑠iRingR𝑠iRing
6 eqid R/𝑠R~QGi=R/𝑠R~QGi
7 2 3 4 5 6 rngringbdlem2 RRngi2IdealRR𝑠iRingR/𝑠R~QGiRingRRing
8 7 expl RRngi2IdealRR𝑠iRingR/𝑠R~QGiRingRRing
9 8 rexlimdva RRngi2IdealRR𝑠iRingR/𝑠R~QGiRingRRing
10 1 9 impbid2 RRngRRingi2IdealRR𝑠iRingR/𝑠R~QGiRing