Metamath Proof Explorer


Theorem ring2idlqusb

Description: A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 20-Feb-2025)

Ref Expression
Assertion ring2idlqusb R Rng R Ring i 2Ideal R R 𝑠 i Ring R / 𝑠 R ~ QG i Ring

Proof

Step Hyp Ref Expression
1 ring2idlqus R Ring i 2Ideal R R 𝑠 i Ring R / 𝑠 R ~ QG i Ring
2 simpll R Rng i 2Ideal R R 𝑠 i Ring R Rng
3 simplr R Rng i 2Ideal R R 𝑠 i Ring i 2Ideal R
4 eqid R 𝑠 i = R 𝑠 i
5 simpr R Rng i 2Ideal R R 𝑠 i Ring R 𝑠 i Ring
6 eqid R / 𝑠 R ~ QG i = R / 𝑠 R ~ QG i
7 2 3 4 5 6 rngringbdlem2 R Rng i 2Ideal R R 𝑠 i Ring R / 𝑠 R ~ QG i Ring R Ring
8 7 expl R Rng i 2Ideal R R 𝑠 i Ring R / 𝑠 R ~ QG i Ring R Ring
9 8 rexlimdva R Rng i 2Ideal R R 𝑠 i Ring R / 𝑠 R ~ QG i Ring R Ring
10 1 9 impbid2 R Rng R Ring i 2Ideal R R 𝑠 i Ring R / 𝑠 R ~ QG i Ring