Metamath Proof Explorer


Theorem ringccoALTV

Description: Composition in the category of rings. (Contributed by AV, 14-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses ringcbasALTV.c C=RingCatALTVU
ringcbasALTV.b B=BaseC
ringcbasALTV.u φUV
ringccoALTV.o ·˙=compC
ringccoALTV.x φXB
ringccoALTV.y φYB
ringccoALTV.z φZB
ringccoALTV.f φFXRingHomY
ringccoALTV.g φGYRingHomZ
Assertion ringccoALTV φGXY·˙ZF=GF

Proof

Step Hyp Ref Expression
1 ringcbasALTV.c C=RingCatALTVU
2 ringcbasALTV.b B=BaseC
3 ringcbasALTV.u φUV
4 ringccoALTV.o ·˙=compC
5 ringccoALTV.x φXB
6 ringccoALTV.y φYB
7 ringccoALTV.z φZB
8 ringccoALTV.f φFXRingHomY
9 ringccoALTV.g φGYRingHomZ
10 1 2 3 4 ringccofvalALTV φ·˙=vB×B,zBg2ndvRingHomz,f1stvRingHom2ndvgf
11 simprl φv=XYz=Zv=XY
12 11 fveq2d φv=XYz=Z2ndv=2ndXY
13 op2ndg XBYB2ndXY=Y
14 5 6 13 syl2anc φ2ndXY=Y
15 14 adantr φv=XYz=Z2ndXY=Y
16 12 15 eqtrd φv=XYz=Z2ndv=Y
17 simprr φv=XYz=Zz=Z
18 16 17 oveq12d φv=XYz=Z2ndvRingHomz=YRingHomZ
19 11 fveq2d φv=XYz=Z1stv=1stXY
20 op1stg XBYB1stXY=X
21 5 6 20 syl2anc φ1stXY=X
22 21 adantr φv=XYz=Z1stXY=X
23 19 22 eqtrd φv=XYz=Z1stv=X
24 23 16 oveq12d φv=XYz=Z1stvRingHom2ndv=XRingHomY
25 eqidd φv=XYz=Zgf=gf
26 18 24 25 mpoeq123dv φv=XYz=Zg2ndvRingHomz,f1stvRingHom2ndvgf=gYRingHomZ,fXRingHomYgf
27 opelxpi XBYBXYB×B
28 5 6 27 syl2anc φXYB×B
29 ovex YRingHomZV
30 ovex XRingHomYV
31 29 30 mpoex gYRingHomZ,fXRingHomYgfV
32 31 a1i φgYRingHomZ,fXRingHomYgfV
33 10 26 28 7 32 ovmpod φXY·˙Z=gYRingHomZ,fXRingHomYgf
34 simprl φg=Gf=Fg=G
35 simprr φg=Gf=Ff=F
36 34 35 coeq12d φg=Gf=Fgf=GF
37 coexg GYRingHomZFXRingHomYGFV
38 9 8 37 syl2anc φGFV
39 33 36 9 8 38 ovmpod φGXY·˙ZF=GF