Metamath Proof Explorer


Theorem ringcidALTV

Description: The identity arrow in the category of rings is the identity function. (Contributed by AV, 14-Feb-2020) (New usage is discouraged.)

Ref Expression
Hypotheses ringccatALTV.c C = RingCatALTV U
ringcidALTV.b B = Base C
ringcidALTV.o 1 ˙ = Id C
ringcidALTV.u φ U V
ringcidALTV.x φ X B
ringcidALTV.s S = Base X
Assertion ringcidALTV φ 1 ˙ X = I S

Proof

Step Hyp Ref Expression
1 ringccatALTV.c C = RingCatALTV U
2 ringcidALTV.b B = Base C
3 ringcidALTV.o 1 ˙ = Id C
4 ringcidALTV.u φ U V
5 ringcidALTV.x φ X B
6 ringcidALTV.s S = Base X
7 1 2 ringccatidALTV U V C Cat Id C = x B I Base x
8 4 7 syl φ C Cat Id C = x B I Base x
9 8 simprd φ Id C = x B I Base x
10 3 9 eqtrid φ 1 ˙ = x B I Base x
11 fveq2 x = X Base x = Base X
12 11 adantl φ x = X Base x = Base X
13 12 reseq2d φ x = X I Base x = I Base X
14 fvex Base X V
15 resiexg Base X V I Base X V
16 14 15 mp1i φ I Base X V
17 10 13 5 16 fvmptd φ 1 ˙ X = I Base X
18 6 reseq2i I S = I Base X
19 17 18 eqtr4di φ 1 ˙ X = I S