Metamath Proof Explorer


Theorem ringlsmss

Description: Closure of the product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024)

Ref Expression
Hypotheses ringlsmss.1 B=BaseR
ringlsmss.2 G=mulGrpR
ringlsmss.3 ×˙=LSSumG
ringlsmss.4 φRRing
ringlsmss.5 φEB
ringlsmss.6 φFB
Assertion ringlsmss φE×˙FB

Proof

Step Hyp Ref Expression
1 ringlsmss.1 B=BaseR
2 ringlsmss.2 G=mulGrpR
3 ringlsmss.3 ×˙=LSSumG
4 ringlsmss.4 φRRing
5 ringlsmss.5 φEB
6 ringlsmss.6 φFB
7 2 ringmgp RRingGMnd
8 4 7 syl φGMnd
9 2 1 mgpbas B=BaseG
10 9 3 lsmssv GMndEBFBE×˙FB
11 8 5 6 10 syl3anc φE×˙FB